Degree | Type | Year |
---|---|---|
4313815 Research in Education | OT | 0 |
You can view this information at the end of this document.
None
Considering the learning of the previous modules, the study of the design of different projects and didactic proposals will be deepened to work on the contextualized integration of science and mathematics teaching. Emphasis will also be placed on how to evaluate these proposals by adopting an applied qualitative research approach.
At the end of the module, students are expected to be able to:
• Understand the role of contexts in projects and didactic proposals for the integration of science and mathematics teaching.
• Identify key elements of communication and mathematical and scientific reasoning to develop projects and solve problems in context.
• Apply evaluation criteria and processes to projects and didactic proposals to promote contextualized teaching of science and mathematics.
• Design competency-based educational proposals with a focus on the improvement of projects and didactic proposals for the contextualized teaching of science and mathematics.
This module will address in a transversal way some of the main processes related to science and mathematics education such as practical work, school projects, technologies for learning, communication in the classroom, problem solving and assessment.
Some of the central topics will be:
• Contextualisation and interdisciplinarity in the teaching of science and mathematics.
• Scientific inquiry based on modelling in relevant contexts.
• Mathematical communication focuses on promoting mathematical reasoning around specific contents of the curriculum.
• Formative and qualifying assessment throughout the learning process of science and mathematics.
• Use of digital tools in the design of contextualized projects in science and mathematics.
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
Classroom practices | 18 | 0.72 | CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52 |
Lectures | 18 | 0.72 | CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52 |
Type: Supervised | |||
Analysis and group discussion of papers | 16 | 0.64 | CA64, CA65, KA63, KA64, KA65, SA51 |
Tutorials | 10 | 0.4 | CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52 |
Type: Autonomous | |||
Production of papers / group work | 60 | 2.4 | CA64, CA65, KA63, KA64, KA65, SA50, SA52 |
Reading papers | 28 | 1.12 | CA64, CA65, KA63, KA64, KA65, SA52 |
The training activity will be developed based on the following dynamics:
• Lectures by the teaching staff
• Readings of articles and documentary collections
• Classroom practices: problem solving/cases/exercises
• Oral presentations
• Tutorials
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
Evaluation of an interdisciplinary project | 45% | 0 | 0 | CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52 |
Individual reflection document | 45% | 0 | 0 | CA65, KA65, SA50, SA51, SA52 |
Participation | 10% | 0 | 0 | CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52 |
To access the assessment, it will be necessary to attend 80% of the sessions of the module. The participation and involvement of students in the proposed activities and the development of the work dynamics will be valued.
Three evaluation activities are proposed:
Reassessment: To recover the continuous assessment activities, it will be necessary to submit a report justifying the changes incorporated into the activities based on the contributions of the teaching staff. The maximum mark that can be obtained in the recovery task is five (5.0). The deadline for submission for the Virtual Campus will be June 5, 2025.
Single assessment: A single document will be delivered with the three continuous assessment activities of the module:
The activities will be delivered anddefended orally on May 22, 2025, from 5:30 p.m. to 8:00 p.m. The recovery of the single assessment will consist of the delivery of a report justifying the changes incorporated into the activities based on the contributions of the teaching staff during the oral defence. The deadline for submitting the recovery will be made through the Virtual Campus and will be June 5, 2025.
Copy or plagiarism. Copying or plagiarism in any type of evaluation activity constitutes a crime and will be penalized with a 0 as a grade of the module, losing the possibility of recovering the evaluation of the activity. An activity or work will be considered "copied" when it reproduces all or a significant part of the work of another classmate. A work or activity will be considered "plagiarized" when a part of an author's text is presented as its own without citing the sources, regardless of whether the sources are on paper or in digital format.
Use of artificial intelligence. The misuse of artificial intelligence to carry out assessment activities constitutes academic fraud and will also be penalised with a 0 as a grade for the module, losing the possibility of recovering the assessment of the activity. An assessment activity will be considered to have misused artificial intelligence when a significant number of incorrect or biased statements are included, sources are not included, non-existent or incorrect work is cited, or style inconsistencies in the use of language are evidenced. In the event of suspicion of plagiarism or academic fraud, the evaluation activity is subject to an oral defence by the student.
Caro, A., & Planas, N. (2021). Estudio exploratorio con futuras maestras sobre lenguas matemáticas para enseñar la relación entre área y volumen. Avances de Investigación en Educación Matemática, 19, 117–131. https://doi.org/10.35763/aiem.v0i19.361
Carrillo, J., Climent, N., Gorgorió, N., Prat, M. y Rojas, F. (2008). Análisis de secuencias de aprendizaje matemático desde la perspectiva de la gestión de la participación. Enseñanza de las Ciencias, 26(1), 67-76.
Couso, D. (2014). De la moda de “aprender indagando” a la indagación para modelizar: una reflexión crítica. XXVI Encuentro de Didáctica de las Ciencias Experimentales. http://uhu.es/26edce/actas/docs/conferencias/pdf/26ENCUENTRO_DCE-ConferenciaPlenariaInaugural.pdf
Couso, D., Domènech Casal, J., Simarro Rodríguez, C., López Simó, V., & Grimalt-Álvaro, C. (2022). Perspectives, Metodologies i Tecnologies en el desplegament de l’educació STEM. Ciències: Revista Del Professorat de Ciències de Primària i Secundària, 44, 56–71. https://doi.org/10.5565/rev/ciencies.470
Gómez Zaccarelli, F., Cándido Vendrasco, N. y Arriagada Jofré, V. (2024). Discusiones y argumentación en la enseñanza de las ciencias: prácticas y desafíos docentes. Enseñanza de las Ciencias, 42(2), 25-43. https://doi.org/10.5565/rev/ensciencias.5958
Grimalt-Álvaro, C., López-Simó, V. & Tena, È. How Do Secondary-School Teachers Design STEM Teaching–Learning Sequences? A Mixed Methods Study for Identifying Design Profiles. Int J of Sci and Math Educ (2024). https://doi.org/10.1007/s10763-024-10457-3
Hernández-Sabaté, A., Joanpere, M., Gorgorió, N., & Albarracín, L. (2015). Mathematics learning opportunities when playing a tower defense game. International Journal of Serious Games, 2(4), 57-71.
Klein, P.D; Kirkpatrick, L.C. (2010). Multimodal Literacies in Science: Currency, Coherence and Focus. Research in Science Education, 40, 87-92.
Lin, F-L., y Rowland, T. (2016). Pre-Service and In-Service Mathematics Teachers’ Knowledge and Professional Development. En, A. Gutierrez, G. C. Leder, y P. Boero, The Second Handbook of Research on the Psychology of Mathematics Education (pp. 483-520). Rotterdam, The Netherlands: Sense Publishers.
Millar, R. (2009). Analysing practical activities to assess and improve effectiveness: The Practical Activity Analysis Inventory (PAAI). Centre for Innovation and Research in Science Education, Department of Educational Studies, University of York, Heslington, York.
Morell, M., & Planas, N. (2024). Calidad de la enseñanza de la divisibilidad en un aula trilingüe de secundaria. Números-Revista de Didáctica de las Matemáticas, 117.
NCTM (2015). De los Principios a la Acción. Para Garantizar el éxito matemático para todos. NCTM.
Niss, M. & Højgaard, T. (2011). Competencies and Mathematical Learning Ideas and inspiration for the development of mathematics teaching and learning in Denmark. KOM project. IMFUFA, Roskilde University, Denmark.
Pérez Torres, M., Couso, D., & Márquez, C. (2021). ¿Cómo diseñar un buen proyecto STEM? Identificación de tensiones en la co-construcción de una rúbrica para su mejora. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 18(1), 1–21. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1301
Pimm, D. (201 ). Speaking mathematically: Communication in the mathematics classroom. Routledge Revivals.
Planas, N., & Pimm, D. (2024). Mathematics education research on language and on communication including some distinctions: Where are we now?. ZDM Mathematics Education 56, 127–139. https://doi.org/10.1007/s11858-023-01497-0
Planas, N., Alfonso, J.M., Arnal-Bailera, A., & Martín-Molina, V. (2024). Mathematical naming and explaining in teaching talk: Noticing work with two groups of mathematics teachers. ZDM Mathematics Education. https://doi.org/10.1007/s11858-024-01576-w
Planas, N., García-Honrado, I., & Arnal-Bailera, A. (2018). El discurso matemático del profesor: ¿Cómo se produce en clase y cómo se puede investigar? Enseñanza de las Ciencias, 36(1), 45-60. https://doi.org/10.5565/rev/ensciencias.2240
Ponte, J. P., & Chapman, O. (2006). Mathematics teachers' knowledge and practices. In A. Gutierrez & P. Boero (Eds.), Handbook of reaserch on the psychology of mathematics education: Past, present and future (pp. 461-494). Roterdham: Sense.
Roca, M.; Márquez, C.; Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31, 1, 95-114.
Sala, G. & Font, V. (2019). Papel de la modelización en una experiencia de enseñanza de las matemáticas basada en indagación. Avances de Investigación en Educación Matemática, num. 16, 73-85. DOI: https://doi.org/10.35763/aiem.v0i16.283
Sala, G., Barquero, B., Barajas, M., & Font, V. (2016). Què amaguen aquestes ruïnes? Disseny d’una unitat didàctica interdisciplinary per una plataforma virtual. Revista del Congrés Internacional de Docència Universitària i Innovació (CIDUI), núm. 3.
Sanmartí Puig, N., & Márquez Bargalló, C. (2017). Aprendizaje de las ciencias basado en proyectos: del contexto a la acción. Ápice. Revista De Educación Científica, 1(1), 3–16. https://doi.org/10.17979/arec.2017.1.1.2020
Sanmartí, N. (2016). Trabajo por proyectos: ¿filosofía o metodología? Cuadernos de Pedagogía, 472.
Sanmartí, N. (2020). Avaluar és aprendre. Xarxa Competències bàsiques. Generalitat de Catalumya. Departament d’Educació.
Sanmartí, N., & Márquez, C. (2017). Aprendizaje de las ciencias basado en proyectos: del contexto a la acción. Ápice. Revista de educación científica, 1(1), 3-16.
Scott, P., Ametller, J. (2006). Teaching science in a meaning fulway: striking a balance between opening up and closing down classroom talk. School Science Review, 88(324), 77-83.
Smith, M. y Stein, M. K. (2016). 5 prácticas para orquestar discusiones en matemáticas. NCTM.
Tena, È., & Couso, D. (2023). ¿Cómo sé que mi secuencia didáctica es de calidad? Propuesta de un marco de evaluación desde la perspectiva de Investigación Basada en Diseño. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 20(2). https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i2.2801
Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation, California.
No specific software is required.
Name | Group | Language | Semester | Turn |
---|---|---|---|---|
(TEm) Theory (master) | 1 | Catalan/Spanish | second semester | afternoon |