Logo UAB
2023/2024

Design and Evaluation of Teaching and Learning of Sciences and Mathematics in Context

Code: 45013 ECTS Credits: 6
Degree Type Year Semester
4313815 Research in Education OT 0 2

Contact

Name:
Concepcio Marquez Bargallo
Email:
conxita.marquez@uab.cat

Teaching groups languages

You can check it through this link. To consult the language you will need to enter the CODE of the subject. Please note that this information is provisional until 30 November 2023.

Teachers

Neus Sanmartí Puig
Genaro Gamboa Rojas
Carme Grimalt Alvaro
Edelmira Rosa Badillo Jimenez

Prerequisites

None


Objectives and Contextualisation

This module tackles some of the main transversal processes related to science and mathematics education, such as practical work, school projects, ICTs for learning and communication in schools, problem solving and assessment. Having into account learnings from previous modules, the focus of this one will be on the design of context-based educational instruction that facilitates the integration of STEM areas. Emphasis will be also put on how to evaluate teaching proposals taking into consideration a design-based research approach. The following contents will be discussed:

  • Contexts for integrating science and maths teaching
  • Learning to solve mathematical problems in context
  • Inquiry and practical work to teach context-based science 
  • Affordances and constraints of the use of ICTs in contextualised projects
  • Teachers' pedagogical content knowledge in relation with science and maths teaching
  • Assessment as a tool to promote contextualised science and maths teaching

Learning Outcomes

  • CA64 (Competence) Study the relevant aspects of the contexts of science and mathematics education, and analyse them as research objectives in order to formulate questions and goals based on them.
  • CA65 (Competence) Adopt innovative approaches to assessment in order to make proposals for improvement and innovation projects on the teaching of science and mathematics in context.
  • KA63 (Knowledge) Describe the different theoretical frameworks of reference that guide research and innovation in science and mathematics education based on socially and environmentally relevant contexts.
  • KA64 (Knowledge) Identify lines of research on the teaching of science and mathematics in context from the relevant professional sources.
  • KA65 (Knowledge) Identify problem areas in innovation on science and mathematics education in context and assess which methodological approaches might help to resolve them.
  • SA50 (Skill) Create relevant research and innovation designs in relation to science and mathematics education in context.
  • SA51 (Skill) Plan research while taking into account the potential and limitations of digital tools for teaching science and mathematics in context.
  • SA52 (Skill) Report the conclusions of research on innovations, the knowledge generated and the ultimate supporting reasons to specialised and non-specialised audiences in a clear and unambiguous manner.

Content

  • Contextualization and interdisciplinarity in the teaching of science and mathematics.
  • Scientific model-based inquiry in relevant contexts.
  • Mathematical modeling from relevant contexts.
  • Digital tools for the teaching of science and mathematics.
  • Models of professional knowledge of the teacher and Resolution of mathematical problems in relevant contexts.
  • Formative assessment throughout the learning process of the sciences and mathematics.
  • The assessment to qualify the learning of science and mathematics.
  • The external evaluation of the teaching of science and mathematics.

Methodology

The training activity will be developed based on the following dynamics:
  • Readings of articles and document collections
  • Lectures by teachers
  • Analysis and collective discussion of articles and document collections
  • Classroom practices: problem solving / cases / exercises
  • Presentation of works
  • Tutorials

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.


Activities

Title Hours ECTS Learning Outcomes
Type: Directed      
Classroom practices 18 0.72 CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52, CA64
Lectures 18 0.72 CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52, CA64
Type: Supervised      
Analysis and group discussion of papers 16 0.64 CA64, CA65, KA63, KA64, KA65, SA51, CA64
Tutorials 10 0.4 CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52, CA64
Type: Autonomous      
Production of papers / group work 60 2.4 CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52, CA64
Reading papers 28 1.12 CA64, CA65, KA63, KA64, KA65, SA52, CA64

Assessment

To access the assessment, attendance at 80% of the module sessions will be required. Students' participation and involvement in the proposed activities and in the development of the work dynamics will be valued.
										
											
Three evaluation activities are proposed: • Evaluation of an interdisciplinary project (including the design of a competence evaluation question) - Presentation of the work in groups. Delivery date: June 6, 2024 • Individual reflection document based on the improvement proposals received from the evaluation of a project (also basing some of the reflections on theoretical references analyzed throughout the module). Delivery date: June 13, 2024 • Participation in the forums on the Virtual Campus. Delivery date: June 13, 2024 Recovery: To recover the continuous assessment activities, it will be necessary to submit a report justifying the changes incorporated in the activities based on the contributions provided by the teaching staff. The delivery deadline for the Virtual Campus will be June 20, 2024
Single assessment: A single document will be delivered with the three continuous assessment activities of the module: Task A: Assessment of an interdisciplinary project (including the design of a competence assessment question); Task B: Individual reflection document on the proposals for improvement of the evaluated project (Task A), also basing some of the reflections on theoretical references analyzed throughout the module; Task C: Participation in the Virtual Campus forums. The activities will be delivered and defended orally on June 13, 2024 from 5:30 p.m. to 8 p.m. The recovery of the single assessment will consist of the delivery of a report justifying the changes incorporated in the activities based on the contributions provided by the teaching staff during the oral defense. The recovery deadlinewill be through the Virtual Campus and will be June 20, 2024.
Plagiarism or copying will result in failure and will be reported to the degree coordinator.

Assessment Activities

Title Weighting Hours ECTS Learning Outcomes
Evaluation of an interdisciplinary project 45% 0 0 CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52
Individual reflection document 45% 0 0 CA65, KA65, SA50, SA51, SA52
Participation 10% 0 0 CA64, CA65, KA63, KA64, KA65, SA50, SA51, SA52

Bibliography

Abrahams, I. & Millar, R. (2008). Does Practical Work Really Work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30 (14), 1945 - 1969.

Albarracín, L., & Gorgorió, N. (2013). Problemas de estimación de grandes cantidades: modelización e influencia del contexto. Revista latinoamericana de investigación en matemática educativa16(3), 289-315.

Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educationa lStudies in Mathematics86(1), 79-96.

Aymerich, À. & Albarracín, L. (2016). Complejidad en el proceso de modelización de una tarea estadística. In Modelling in Science Education and Learning, 9(1), 5-24.

Badillo, E. y Fernández, C. (2018). Oportunidades que emergen de la relación entre perspectivas: Análisis del conocimiento y/o competencia docente. L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 66-80). Gijón: SEIEM.

Badillo, E.; Figueiras, L.; Font, V.; Martínez, M. (2013). Visualización gráfica y análisis comparativo de la práctica matemática en el aula. Enseñanza de las Ciencias, 31(3), 207-225.

Caamaño, A. (cr.) (2011). Didáctica de la Física y la Química. Barcelona: Ed. Graó.

Blomhøj, M. (2004). Mathematical Modelling: A Theory for Practice. In B. Clarke et al. (Eds.), International Perspectives on Learning and Teaching Mathematics (pp. 145-159). Gotemburgo, Suecia: National Center forMathematics Education.

Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Vol. 38 (2), 86-95. Disponible a:https://www.researchgate.net/publication/225708294_Theoretical_and_empirical_differentiations_of_phases_in_the_modeling_process_Zentralblatt_fr_Didaktik_der_Mathematik_382_86-95

Gamboa, G., Badillo, E., Ribeiro, M., Montes, M. y Sánchez-Matamoros, G. (2020). The role of teachers’knowledge in the use of learning opportunities triggered by mathematical connections. En, S. Zehetmeier, D. Potari y M. Ribeiro. Professional Development and Knowledge of Mathematics Teachers (pp. 24-43). New York: Routledge.

García-Honrado, I., Clemente, F., Vanegas, Y., Badillo, E. y Fortuny, J. M. (2018). Análisis de la progresión de aprendizaje de una futura maestra. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 231-240). Gijón: SEIEM.

Hernández, M. I. & Couso, D. (2016). Comunicando ciencia en talleres experimentales para estudiantes de educación primaria y secundaria: Aportaciones de la didáctica de las ciencias experimentales al diseño, implementación y evaluación de talleres de comunicación científica. UAB. Disponible en: < https://ddd.uab.cat/pub/llibres/2016/149938/Guia_talleres_Fecyt_revisada.pdf>

Hernández, M.I. (2018). Com a docents de ciències, avaluem la nostra pràctica? Revista Ciències, 36, 20-29.

Hernández-Sabaté, A., Joanpere, M., Gorgorió, N., & Albarracín, L. (2015). Mathematics learningopportunities when playing a tower defense game. International Journal of Serious Games2(4), 57-71.

Hofstein, A., Lunetta, V.N. (2004). The Laboratory in Science Education: Foundations for theTwenty-First Century. Science Education, 88, 1.

Klein, P.D; Kirkpatrick, L.C. (2010). Multimodal Literacies in Science: Currency, Coherence and Focus. Research in Science Education, 40, 87-92.

Lin, F-L., y Rowland, T. (2016). Pre-Service and In-Service Mathematics Teachers’ Knowledge and Professional Development. En, A. Gutierrez, G. C. Leder, y P. Boero, The Second Handbook of Research on the Psychology of Mathematics Education (pp. 483-520). Rotterdam, The Netherlands: Sense Publishers.

Maaß, K. (2006). What are modelling competencies? ZDM Vol. 38 (2), 113 – 141. https://pdfs.semanticscholar.org/0303/d30d25016a810887169b23259d7aa83683d1.pdf

Millar, R. (2009). Analysing practical activities to assess and improve effectiveness: The Practical Activity Analysis Inventory (PAAI). Centre for Innovation and Research in Science Education, Department of Educational Studies, University of York, Heslington, York.

Mortimer, E.F., Scott, P.H. (2003). Meaning Making in Secondary. Science Classrooms. Philadelphia, USA: Open University Press.

Niss, M. & Højgaard, T. (2011). Competencies and Mathematical Learning Ideas and inspiration for the development of mathematics teaching and learning in Denmark. KOM project. IMFUFA, Roskilde University, Denmark.

Osborne, J. (2014). Teaching scientific practices: meeting the challenge of change. Journal of Science Teacher Education, 25, 177 – 196.

Pintó, R. Couso, D. Hernandez, M. (2010). An inquiry-oriented approach for making the best use of ICT in the classroom. elearning papers, 20.

Polya, G. (1965). Cómo plantear y resolver problemas.Ed. Trillas. México.

Ponte, J. P., & Chapman, O. (2006). Mathematics teachers' knowledge and practices. In A. Gutierrez & P. Boero (Eds.), Handbook of reaserch on the psychology of mathematics education: Past, present and future (pp. 461-494). Roterdham: Sense.

Rico, L., Gómez, P. y Cañadas, M. (2014). Formación Inicial en educación matemática de los maestros de primaria en España, 1991-2010. Revista de Educación, 363, 35-59.

Rico, L., Gómez, P., Cañadas, M. C. (2009). Estudio TEDS-M: estudio internacional sobre la formación inicial del profesorado de matemáticas. En M.J. González, M.T. González & J. Murillo (Eds.), Investigación en Educación Matemática XIII (pp. 425- 434). Santander: SEIEM.

Roca, M.; Márquez, C.; Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31, 1, 95-114.

Sala, G. & Font, V. (2019). Papel de la modelización en una experiencia de enseñanza de las matemáticas basada en indagación. Avances de Investigación en Educación Matemática, num. 16, 73-85. DOI: https://doi.org/10.35763/aiem.v0i16.283

Sala, G., Barquero, B., Barajas, M., & Font, V. (2016). Què amaguen aquestes ruïnes? Disseny d’una unitat didàctica interdisciplinary per una plataforma virtual. Revista del Congrés Internacional de Docència Universitària i Innovació (CIDUI), núm. 3 (2016). 

Sanmartí, N. (2016). Trabajo por proyectos: ¿filosofía o metodología? Cuadernos dePedagogía, 472.

Sanmartí, N., & Márquez, C. (2017). Aprendizaje de las ciencias basado en proyectos: del contexto a la acción. Ápice. Revista de educación científica, 1(1), 3-16.

Sanmartí, N. (2020). Avaluar és aprendre. Xarxa Competències bàsiques. Generalitat de Catalumya. Departament d’Educació.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). New York: MacMillan.

Shulman, L. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, (15), 2,  4-14.

Scott, P., Ametller, J. (2006). Teaching science in a meaning fulway: striking a balance between opening up and closing down classroom talk. School Science Review, 88(324), 77-83.

Sol, M., Giménez, J., Rosich, N. (2011). Trayectorias modelizadoras en la ESO. Modelling in Science Education and Learning, [S.l.], v. 4, p. 329-343, Disponible en: <http://polipapers.upv.es/index.php/MSEL/article/view/3100>.

Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation, California.


Software

No specific software is required