Degree | Type | Year |
---|---|---|
Electronic Engineering for Telecommunication | OT | 4 |
You can view this information at the end of this document.
The objective of this course is to form students from the Telecomunications degree in the models and methods frequently used in the field of electromagnetic compatibility (EMC). To this aim, the basic formulations used for the description of interference phenomena and electromagnetic compatibility will be presented. We will also study the national and international directives currently active. We will explore the interference sources and how they are measured using professional instruments.
Content of the course:
1.- Introducción a la EMC
Motivación. Ejemplos introductorios. Definiciones y terminología
Modelo fuente-acoplo-víctima
Fuentes de interferencia naturales y artificiales
Mecanismos de acoplamiento: interferencia conducida y radiada
Conceptos de inmunidad y susceptibilidad
Espectros de señales. Análisis de señales pulsadas
Dimensión eléctrica
Unidades comúnmente utilizadas en EMC. Decibelio
2.- Principios electromagnéticos básicos
Análisis vectorial. Sistemas de coordenadas
Campos estáticos. Potenciales escalares y vectoriales
Líneas de alta tensión. Bobinas de Helmholtz
Materiales dieléctricos y magnéticos. Cargas y corrientes equivalentes
Ecuaciones de Maxwell. Propagación de ondas electromagnéticas
Entornos de modelización en EMC
3.- Modelos de baja frecuencia
Resolución de las ecuaciones de Laplace y Poisson
Método de elementos finitos y diferencias finitas
Circuitos de parámetros concentrados
Modelos de acoplamiento circuital: acoplamiento por conducción e inducción.
Diafonía en circuitos impresos (crosstalk)
Descarga electrostática (ESD). Modelización y técnicas de prevención
4.- Modelos de alta frecuencia
Ecuaciones delas líneas de transmisión con y sin pérdidas
Interacción de campos electromagnéticos con líneas de transmisión
Lineas de transmisión multiconductoras
Ecuación de Baum-Liu-Tesche
Método de diferencias finitas en el dominio del tiempo
Efectos de la caída de un rayo sobre una línea
Campos de radiación y de inducción
Radiación de fuentes extensas y aberturas
Método de momentos. Acoplamiento de fuentes extensas
4.- Apantallamiento
Topología electromagnética en EMC
Atenuación de la interferencia conducida
Efectividad del blindaje. Blindaje en circuitos integrados
Blindaje eléctrico a baja y alta frecuencia
Blindaje magnético a baja y alta frecuencia
Filtros de ferrita y filtros pasantes
Sistemas absorbentes
Diseño de recientos con aberturas
5.- Mediciones y Control
Desarrollo de sistemas bajo criterios de EMC
Sistemas de preconformidad
Métodos y equipos para la medición de interferencias
Receptores y LISN. Factor de antena
Ambientes de medición. Planos de reverberación
Cámaras anecoicas y celdas TEM
6.- Normativas y aplicaciones
Organismos reguladores
Estándares y normativa internacional sobre EMC
Declaración de conformidad. Cadena de responsabilidades
Electrodomésticos
Equipos de tecnología de la información
Arquitectura
Transportes
Equipamiento médico
Aspectos vinculados a la iluminación
7.- Aspectos biológicos de los campos electromagnéticos
Sociedad y campos electromagnéticos
Espectro electromagnético
Radiación ionizante y no ionizante
Baja frecuencia
RF y microondas
Efectos térmicos y lipoatrofia
Normativa y limites de exposición
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
Directed | 15 | 0.6 | 2, 6, 12, 16 |
Directed | 30 | 1.2 | 1, 2, 10, 5, 9, 11, 14 |
Type: Supervised | |||
Supervised | 10 | 0.4 | 7, 13 |
Type: Autonomous | |||
Autonomous | 20 | 0.8 | 3, 8, 5, 11, 13 |
Autonomous | 20 | 0.8 | 1, 7, 8, 11 |
Along the course, the students will have to present activities (analysis of papers, readings, etc) assigned by the professor related to the Unity under study. The students will carry out some simulation practices about the subject discussed in the theory classes. The students must also present one subjected related to EMC in agreement with the professor's directives. The course ends with an individual evaluation about the contents of the course.
Platform: Campus Virtual
In this subject, the use of Artificial Intelligence (AI) technologies is allowed as an integral part of the development of the work, provided that the final result reflects a significant contribution of the student in the analysis and personal reflection.
The student must clearly identify which parts have been generated with this technology, specify the tools used and include a critical reflection on how these have influenced the process and the final result of the activity.
The lack of transparency in the use of AI will be considered a lack of academic honesty and may lead to a penalty in the grade of the activity, or greater sanctions in serious cases.
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
Activity 1 | see below | 40 | 1.6 | 1, 2, 3, 10, 7, 8, 6, 5, 9, 11, 13, 12, 16, 15 |
Activity 2 | see below | 10 | 0.4 | 7, 8, 5, 12, 15 |
Activity 3 | see below | 5 | 0.2 | 4, 7, 6, 14, 16 |
Activities:
The minimum score in the individual evaluation is 5/10.
MH: best final grade higher than 9, Not Assessable: not having attended any activity
All activities can be made up.
All activities are compulsory and may be subject to changes according to what the teacher deems necessary.
Repeating students can validate the practices carried out while maintaining the grade obtained.
Without prejudice to other disciplinary measures that may be deemed appropriate, irregularities committed by the student that may lead to a variation in the grade of an assessment act will be graded with a zero. Therefore, copying, plagiarism, cheating, allowing copying, etc. in any of the assessment activities will imply failing it with a zero.
This subject does not provide for the single assessment system.
Bibliography
C. R. Paul, Introduction to electromagnetic compatibility. Second Edition, John Wiley & Sons, 2006
C. Christopoulos, Principles and techniques of electromagnetic compatibility, CRC Press, 1995.
J. Sebastian, Fundamentos de compatibilidad electromagnética, Addison-Wesley 1999.
C. R. Paul, Analysis of multiconductor transmission lines, IEEE Press, 2008.
Addicional
F.M.Tesche, M.V.Ianoz and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley, 1997.
N. Ellis, Interferencias Eléctricas Handbook, Paraninfo, 1999.
T. Williams, EMC Control y limitación de energía electromagnética, Paraninfo, 1997.
D. Weston, Electromagnetic Compatibility, Principles and Applications, Dekker, 2001.
R. Leventhal, Semiconductor modeling for simulating signal, power and electromagnetic integrity, Springer, 2006.
The simulation software is provided by the professor
Please note that this information is provisional until 30 November 2025. You can check it through this link. To consult the language you will need to enter the CODE of the subject.
Name | Group | Language | Semester | Turn |
---|---|---|---|---|
(PAUL) Classroom practices | 321 | Spanish | first semester | morning-mixed |
(PLAB) Practical laboratories | 321 | Spanish | first semester | morning-mixed |
(TE) Theory | 320 | Spanish | first semester | morning-mixed |