Esta versión de la guía docente es provisional hasta que no finalize el periodo de edición de las guías del nuevo curso.

Logo UAB

Probabilidad y Modelización Estocástica

Código: 100104 Créditos ECTS: 8
2025/2026
Titulación Tipo Curso
Matemáticas OB 3

Contacto

Nombre:
Giulia Binotto
Correo electrónico:
giulia.binotto@uab.cat

Equipo docente

Giulia Binotto
Ramon Gallardo Campos

Idiomas de los grupos

Puede consultar esta información al final del documento.


Prerrequisitos

Cálculo en diversas variables y optimización.
Análisis matemático.


Objetivos y contextualización

La teoría de la probabilidad tiene su origen en el siglo XVII con las primeras formalizaciones de la noción de azar, motivadas por cuestiones relacionadas con los juegos. Las aplicaciones de probabilidad incluyen prácticamente todas las ciencias y la tecnología, siendo también la base teórica de la Estadística.
En esta asignatura nos centraremos tanto en la teoría (desarrollo del modelo matemático de los fenómenos aleatorios) como en algunos aspectos más aplicados de la modelización de problemas reales y su resolución mediante las técnicas aprendidas.




Competencias

  • Actuar en el ámbito de conocimiento propio evaluando las desigualdades por razón de sexo/género.
  • Aplicar el espíritu crítico y el rigor para validar o refutar argumentos tanto propios como de otros.
  • Formular hipótesis e imaginar estrategias para confirmarlas o refutarlas.
  • Identificar las ideas esenciales de las demostraciones de algunos teoremas básicos y saberlas adaptar para obtener otros resultados.
  • Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  • Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
  • Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
  • Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
  • Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  • Reconocer la presencia de las Matemáticas en otras disciplinas.
  • Trabajar en equipo.

Resultados de aprendizaje

  1. Aplicar el espíritu crítico y el rigor para validar o refutar argumentos tanto propios como de otros.
  2. Calcular probabilidades en distintos espacios.
  3. Identificar las principales desigualdades y discriminaciones por razón de sexo/género presentes en la sociedad.
  4. Manejar variables aleatorias y conocer su utilidad para la modelización de fenómenos reales.
  5. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  6. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
  7. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
  8. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
  9. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  10. Reconocer situaciones reales en las que aparecen las distribuciones probabilísticas más usuales.
  11. Trabajar en equipo.
  12. Utilizar el concepto de independencia y aplicar en casos sencillos el teorema central del límite.

Contenido

1. Modelos probabilísticos

2. Variables i vectores aleatorios

3. Esperanza matemática

4. Convergencia de variables aleatorias

5. Leyes de los grandes números

6. Teorema del límite central


Actividades formativas y Metodología

Título Horas ECTS Resultados de aprendizaje
Tipo: Dirigidas      
Clases de problemas 30 1,2 1, 2, 5, 6, 9, 10, 12, 4
Clases de teoría 30 1,2 1, 2, 5, 6, 9, 10, 12, 4
Tipo: Supervisadas      
Sesiones de prácticas 6 0,24 1, 2, 5, 6, 9, 10, 12, 4
Tipo: Autónomas      
Estudio personal 118 4,72 1, 2, 5, 6, 9, 10, 12, 4

Habrá tres tipos de actividades presenciales: clases de teoría, clases de problemas y clases prácticas. La asistencia a las sesiones de prácticas es obligatoria.

Esta asignatura utilizará una Aula Moodle en el Campus Virtual de la UAB.

Para esta asignatura, se permite el uso de tecnologías de IA exclusivamente en tareas de apoyo, como la búsqueda bibliográfica o de información, la corrección de textos y las traducciones. El estudiante deberá identificar claramente qué partes han sido generadas con esta tecnología, especificar las herramientas empleadas e incluir una reflexión crítica sobre cómo estas han influido en el proceso y el resultado final de la actividad. La falta de transparencia en el uso de la IA en esta actividad evaluable se considerará una falta de honestidad académica y podrá conllevar una penalización parcial o total en la calificación de la actividad, o sanciones mayores en casos graves.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.


Evaluación

Actividades de evaluación continuada

Título Peso Horas ECTS Resultados de aprendizaje
Evaluación continuada 100% 12 0,48 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 4
Examen de recuperación 90% 4 0,16 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 4

Evaluación continua:

  • Asistencia y evaluación de cuatro prácticas: 10% de la nota.
  • Dos exámenes parciales con un peso del 45% cada uno.

Evaluación única:

  • Asistencia obligatoria en las prácticas.
  • El día que se programará para realizar el segundo examen parcial: evaluación o entrega de las cuatro prácticas (10%) y realización de dos exámenes (45% cada uno), donde se evaluará la primera y segunda parte del curso, respectivamente.
  • Para aprobar la asignatura será necesario un mínimo de 3.5 (sobre 10) en cada examen y nota de prácticas.


Evaluación de las prácticas: La calificación de las prácticas podrá complementarse con preguntas relacionadas incluidas en los exámenes parciales.

Examen de recuperación: Valdrá un 90% y podrá mejorarse la nota de los parciales. Participar en la recuperación implica la renuncia a la nota obtenida.

Nota mínima: Para aprobar la asignatura será necesario un mínimo de 3.5 en cada parcial (o su recuperación) y en las prácticas.

Matrículas de Honor: Se decidirán antes del examen de recuperación.

Presentados y No presentados: Los estudiantes que se hayan presentado, al menos, al 50% de la materia serán calificados como presentados a final de curso. De lo contrario, su calificación será No evaluable.


Bibliografía

Xavier Bardina. Càlcul de Probabilitats. Servei de Publicacions UAB, 2004.

Marta Sanz-Solé . Probabilitats. Edicions Universitat de Barcelona, 1999.

Quentin Berger, Francesco Caravenna, Paolo Dai Pra. Probabilità. Un primo corso attraverso esempi, modelli e applicazioni. UNITEXT, volume 127, Springer, 2021.

Aureli Alabert. Mesura i Probabilitat (2a ed.). Servei de Publicaciones UAB, 1997. (Disponible a http://gent.uab.cat/aureli_alabert/content/teaching)

Olga Julià, David Márquez, Carles Rovira i Mònica Sarrà. Probabilitats: Problemes i més problemes. Publicacions i edicions Universitat de Barcelona, 2005.

 


Software

En las clases de práctica se utilizará el programa R.


Grupos e idiomas de la asignatura

La información proporcionada es provisional hasta el 30 de noviembre de 2025. A partir de esta fecha, podrá consultar el idioma de cada grupo a través de este enlace. Para acceder a la información, será necesario introducir el CÓDIGO de la asignatura

Nombre Grupo Idioma Semestre Turno
(PAUL) Prácticas de aula 1 Catalán primer cuatrimestre manaña-mixto
(PAUL) Prácticas de aula 2 Catalán primer cuatrimestre manaña-mixto
(PLAB) Prácticas de laboratorio 1 Español primer cuatrimestre manaña-mixto
(PLAB) Prácticas de laboratorio 2 Español primer cuatrimestre manaña-mixto
(TE) Teoría 1 Catalán primer cuatrimestre manaña-mixto