Degree | Type | Year |
---|---|---|
4316222 Research in Clinical Psychology and Health | OT | 0 |
You can view this information at the end of this document.
Knowledge of module 1, especially those related to research methodology and research designs, for their direct link with statistical modeling, those related to descriptive and bivariate analysis, and about functioning of the statistical software used.
Provide the necessary skills (theoretical and instrumental) so that the student is able to:
- Analyze the psychometric properties of a questionnaire relative to internal structure and reliability
- Analyze the data of a research using linear or logistic regression models, both in order to predict the response and to study the influence of an exposure on the response
- Incorporate the phenomena of interaction and confusion into the statistical modeling process
- Perform the diagnosis of the conditions of application of linear and logistic regression models
- Distinguish a moderator variable from a mediator variable and to estimate structural equation models (SEM) for the analysis of mediation models
- Interpret the results of the regression models and SEM, being able to select those most suitable to be included in the research report
Block A
- Internal structure: principal components analysis (A1) and confirmatory factor analysis and measurement invariance (A2)
- Reliability (A3)
Block B
- Linear regression: predictive models and to evaluate effects
- Statistical modeling in the presence of interaction and confusion
- Diagnosis of the linear regression model
Block C
- Logistic regression: predictive models and to evaluate effects
- Logistic regression and diagnostic tests
- Diagnosis of the logistic regression model
Block D
- Moderation vs mediation
- Structural equation models for the analysis of mediating variables
Note: the content schedule may be subject to change.
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
Master class + practical sessions with statistical program (9 sessions of variable duration depending on the contents of each block) | 30 | 1.2 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 |
Type: Supervised | |||
In-person and/or virtual tutors | 6 | 0.24 | |
Type: Autonomous | |||
Reading of texts, study and personal work, preparation of individual and/or group reports | 110 | 4.4 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 |
Directed sessions:
- Master classes. Using a material published by the teachers, explanation is made based on examples and matrices of real research data in psychology. Each master class is combined with a space dedicated to the debate and practical exercise with students, who are expected to provide feedback on the understanding, usefulness and applicability of the presented concepts.
- Practical sessions. The results presented in the master class are replicated using statistical software. New exercises with a similar structure are also added.
Materials are in Spanish and English; statements of written learning outcomes or tests are in Spanish; statistical software user-interface can be in English.
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
EvA Practical report on internal structure and reliability (individual, written, on-line delivery, for CA: at the end of the 3 class sessions of this block A) | 25 | 0 | 0 | 1, 3, 6, 10, 12, 16, 17 |
EvB Test on linear regression (individual, written, face-to-face, at the end of the 5 class sessions of blocks B and C) | 35 | 2 | 0.08 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 |
EvC Test on logistic regression (individual, written, face-to-face, at the end of the 5 class sessions of blocks B and C [week after evB]) | 25 | 2 | 0.08 | 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 16, 17 |
EvD Summary-report on mediation (CA group or SA individual, written, on-line delivery, for CA: at the end of the class session of this block D) | 15 | 0 | 0 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 |
The evaluation process, whether continuous-assessment (CA) or single-assessment (SA), consists of 4 evaluative elements. For continuous assessment, see the table of assessment activities below (the detailed schedule will be provided before starting the subject). Single assessment will only differ in autor-ship and date of completion/delivery: individual the last day of face-to-face evaluation of the continuous assessment for the 4 learning evidence.
The final grade will be obtained as the weighted average of the 4 evaluation evidences. The module will be passed with grades equal to or greater than 5 points (on a scale of 0 to 10 points), with a minimum of 3 points on avergage in EvB and EvC; otherwise the maximum grade in the course will be 4.5.
The resit process will be the same for the continuous assessment and for the single assessment. Students who have obtained a final grade between 3.5 and less than 5 points and who have carried out evaluation evidence weighing at least 2/3 of the total grade, will be able to take resit (at the end of the subject), to carry out again evidences B and/or C that have not been successfully passed. The maximum grade that can be obtained in each evidence recovered will be 6 points. The grade obtained in the evidence/s recovered will replace the respective original grade and the final grade will be recalculated.
A student who has presented evidence that exceeds 40% of the total may not be qualified as "Not Evaluable".
No unique final synthesis test for students who enroll for the second time or more is anticipated.
The document with the evaluation guidelines of the faculty can be found at: https://www.uab.cat/web/estudiar/graus/graus/avaluacions-1345722525858.html
Abad, Francisco J.; Olea, Julio; Ponsoda, Vicente; García, Carmen. (2011). Medición en ciencias sociales y de la salud. Síntesis. [Electronic resurce available at: UAB Library]
American Educational Research Association, American Psychological Association, National Council on Measurement in Education (2014). The standards for educational and psychological testing. Author. [https://www.testingstandards.net/open-access-files.html]
Ato, Manuel; Vallejo, Guillermo. (2011). Los efectos de terceras variables en la investigación psicológica. Anales de Psicología, 27, 550-561. [https://revistas.um.es/analesps/article/view/123201/115851]
Bandalos, Deborah L. (2018). Measurement theory and applications for the social sciences. Guilford Press. [ISBN 1462532136] [Electronic resurce available at: UAB Library]
Kleinbaum, David G.; Kupper, Lawrence L.; Nizam, Azhar; Rosenberg, Eli S. (2014). Applied regression analysis and other multivariable methods. (5ª ed.). Brooks/Cole. [ISBN 1285051084]
Kleinbaum, David G.; Klein, Mitchel. (2010). Logistic regression. A Self-learning text. 3rd ed. Springer. [https://www.springer.com/gp/book/9781441917416; https://link.springer.com/book/10.1007/978-1-4419-1742-3]
Shmueli, Galit. (2010). To explain or to predict? Statistical Science, 25, 289-310. https://dx.doi.org/10.1214/10-STS330
Stata
Name | Group | Language | Semester | Turn |
---|---|---|---|---|
(TEm) Theory (master) | 1 | Spanish | second semester | afternoon |