Titulació | Tipus | Curs |
---|---|---|
2503852 Estadística Aplicada | OB | 2 |
Podeu consultar aquesta informació al final del document.
Probabilitat elemental. Variables aleatories reals. Càlcul diferencial i integral. Algebra elemental: espais vectorials i determinants.
La distribució de probabilitat d'un vector aleatori (discret o continu) és l'objectiu principal d'aquest curs.
Analitzem les principals característiques de la distribució conjunta: el vector de mitjanes, la matriu de variàncies-covariàncies,
les distribucions marginals i condicionals, etc.
Com a exemple principal estudiem la distribució normal multidimensional. Aquesta és una distribució contínua important, amb
aplicacions en la teoria de models lineals, en l'anàlisi multivariant i en la teoria de la decisió estadística.
La teoria i els càlculs relacionats amb les distribucions multidimensionals contínues depenen en gran mesura del càlcul integral i diferencial
amb funcions de diverses variables. Tenint en compte això, revisem les principals tècniques amb aplicacions en la probabilitat multivariant.
1. Vectors aleatoris.
Vectors aleatoris k-dimensionals. Les variables components d'un vector aleatori. Definició de la llei conjunta d'un vector aleatori:
El cas discret i el cas absolutament continu. La funció de distribució de probabilitat conjunta. Distribucions bivariants discretes
finites: distribucions marginals i condicionals.
2. Distribucions discretes.
Distribucions discretes bivariants generals. Distribucions marginals. Distribucions discretes multivariants. Distribucions marginals.
La distribució multinomial. Funcions d'un vector aleatori discret.
3. Distribucions contínues.
Distribucions contínues bivariants generals. Distribucions marginals. Distribucions multivariants contínues. Distribucions marginals.
Funcions d'un vector aleatori continu.
4. Independència i distribucions condicionals.
Variables aleatòries estadísticament independents i distribucions conjuntes. Distribucions condicionals: cas discret i continu.
5. Esperança matemàtica i altres característiques numèriques.
Esperança d'una funció d'un vector aleatori. La funció generatriu dels moments. Covariància i coeficient de correlació.
La matriu de variàncies-covariàncies. Esperança condicional. Variància condicional. El teorema de la doble esperança.
6. La distribució normal multidimensional.
La distribució normal bidimensional. La distribució normal multidimensional. Distribucions relacionades la distribució normal.
distribucions chi-quadrat, distribucions t de Student i distribucions F de Fisher-Snedecor. Teorema de Student. Teorema de Cochran.
Els continguts proposats poden experimentar alguna modificació (priorització o reducció)
en funció de les restriccions a la presencialitat que imposin les autoritats sanitàries.
Títol | Hores | ECTS | Resultats d'aprenentatge |
---|---|---|---|
Tipus: Dirigides | |||
Classes de teoria | 28 | 1,12 | |
Tipus: Supervisades | |||
Classes pràctiques de problemes | 14 | 0,56 | |
Pràctiques de laboratori (amb Maxima i R) | 14 | 0,56 | |
Tipus: Autònomes | |||
Dossier de treball personal d'exercicis i de teoria | 22 | 0,88 |
La metodologia docent es basa en les següents activitats i materials:
La metodologia docent proposada pot experimentar alguna modificació en funció
de les restriccions a la presencialitat que imposin les autoritats sanitàries.
Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.
Títol | Pes | Hores | ECTS | Resultats d'aprenentatge |
---|---|---|---|---|
Dossier de treball personal d'exercicis i de teoria (DTP) | 10% a 20% | 44 | 1,76 | |
Exercicis d'aula (EA) | 10% | 14 | 0,56 | |
Exàmens finals (EF1, EF2) | 0% a 50% | 0 | 0 | KM10 |
Exàmes parcials (EP1, EP2) | 20% a 40% (cadascun) | 0 | 0 | KM10 |
Pràctiques de laboratori (amb Maxima i R) | 0% a 10% | 14 | 0,56 |
Avaluació continuada:
Els estudiants que facin l'avaluació continuada poden obtenir fins a un 40% de la puntuació total amb treball personal, realitzat al llarg del curs:
dossier de treball personal (DTP), treballs de laboratori informàtic (PRC) i problemes de classe (EA), si es lliuren dins del termini.
La puntuació restant està coberta per dos exàmens parcials, EP1 i EP2, ambdós amb un examen de segona oportunitat, EF1 i EF2.
Per aprovar l'assignatura és necessari obtenir un mínim del 30% en cadascun dels dos exàmens parcials, així com un mínim del 50%
de la puntuació total.
Indiquem DTP, EA, PRC, EP1, EP2, EF1 i EF2 els punts (sobre 10) obtinguts en cadascun d’aquests elements d’avaluació. Aleshores
la puntuació final global QF (sobre 10) es calcula mitjançant la següent fórmula:
QF = TC + 0.05 (10-TC-TC1) [max(EP1, EF1) + max(EP2, EF2)]
on TC = 0.2 DTP + 0.1 EA + 0.1 PRC i TC1 = max(0, 1-0.2 DTP) + (1-0.1 EA) .
La condició de mínim en els exàmens parcials és: min{max(EP1, EF1), max(EP2, EF2)} >= 3.
Si no es compleix aquesta condició, la puntuació global final és min(QF, 4.5).
Avaluació única:
Els estudiants que facin l'avaluació única tindran un examen final i un examen de recuperació.
L'examen final es farà un únic diao en dos dies consecutius i tindrà dues parts, amb una durada màxima de 3 hores cadascuna.
El contingut de l'examen de la primera part serà el mateix que el de l'examen EP1 (parcial 1 de l'avaluació continuada). Denotarem AU1 la qualificació d'aquest examen, sobre 10.
El contingut de l'examen segona part serà el mateix que el de l'examen EP2 (parcial 2 de l'avaluació continuada). Denotarem AU2 la qualificació d'aquest examen, sobre 10.
Si es cumpleix la condició min(AU1, AU2) >= 3.5 , la qualificació final es calcula com QFU = (AU1 + AU2)/2 , i s'aprova si QFU >= 5.
En cas contrari cal fer l'examen de recuperació.
L'examen de recuperació es farà un únic dia o en dos dies consecutius i tindrà dues parts, amb una durada màxima de 3 hores cadascuna.
El contingut de l'examen de la primera part serà el mateix que el de l'examen EP1 (parcial 1 de l'avaluació continuada). Denotarem AUR1 la qualificació d'aquest examen, sobre 10.
El contingut de l'examen de la segona part serà el mateix que el de l'examen EP2 (parcial 2 de l'avaluació continuada). Denotarem AUR2 la qualificació d'aquest examen, sobre 10.
La condició de mínim en aquest cas és: min{max(AU1, AUR1), max(AU2, AUR2)} >= 3.5 , i la qualificació final es calcula com
QFUR = 0.7 ([max(AU1, AUR1) + max(AU2, AUR2)]/2) + 0.3 QFU
Si no es compleix la condició de mínim, la puntuació global final és min(QFUR, 4.5).
Les activitats d'avaluació proposades poden experimentar alguna modificació en funció
de les restriccions a la presencialitat que imposin les autoritats sanitàries.
J.E. Marsden & J. Tromba: Calculo Vectorial (Addison-Wesley).
M. de Groot: Probabilidad y Estadística (Addison-Wesley).
D. Peña: Fundamentos de Estadística (Alianza Editorial).(*)
D. Peña: Análisis de datos multivarianters (McGraw-Hill).(*)
J.G. Kalbfleisch: Probabilidad e Inferencia Estadística (Vol. 1) (AC).
R.P. Dobrow: Introduction to Stochastic Processes with R (Wiley)
V. Zaiats; M.L. Calle; R. Presas: Probabilitat i Estadística. Exercicis I. U.A.B. (Materials, 107).(*)
(*) Bibliografia més rellevant.
Nom | Grup | Idioma | Semestre | Torn |
---|---|---|---|---|
(PAUL) Pràctiques d'aula | 1 | Català | primer quadrimestre | tarda |
(PLAB) Pràctiques de laboratori | 1 | Català | primer quadrimestre | tarda |
(PLAB) Pràctiques de laboratori | 2 | Català | primer quadrimestre | tarda |
(TE) Teoria | 1 | Català | primer quadrimestre | tarda |