Logo UAB

Matemàtiques II

Codi: 102344 Crèdits: 6
2024/2025
Titulació Tipus Curs
2501572 Administració i Direcció d'Empreses FB 1
2501573 Economia FB 1

Professor/a de contacte

Nom:
Fernando Payro Chew
Correu electrònic:
fernando.payro@uab.cat

Idiomes dels grups

Podeu consultar aquesta informació al final del document.


Prerequisits

Per poder efectuar un bon seguiment d'aquesta assignatura caldrà saber manipular correctament els conceptes i eines matemàtiques bàsiques, així com haver assolit prèviament les nocions fonamentals de continuïtat, derivada i anàlisi i representació gràfica de funcions reals d'una variable real que es presenten i treballen al curs de Matemàtiques I.


Objectius

En aquesta assignatura s'introdueix l'alumne a l'estudi de l'àlgebra lineal i de les funcions de diferents variables, posant èmfasi en les seves aplicacions en l'entorn de l'economia. L'alumne hauria de no només adquirir i assimilar nous coneixements matemàtics, sinó també ser capaç d'aplicar-los a l'anàlisi quantitativa que requerirà tant dins l'anàlisi econòmica com en d'altres matèries de l'àmbit empresarial.

Per tant, l'objectiu de l'assignatura és que l'alumne es familiaritzi amb les nocions matemàtiques bàsiques que després utilitzarà en l'estudi de la teoria i l'anàlisi econòmica.

En concret els objectius que es pretenen assolir són:

1. Familiaritzar l'estudiant amb l'espai euclidià n-dimensional.

2. Treballar amb determinants i matrius.

3. Resoldre sistemes d'equacions lineals.

4. Entendre les funcions de diferents variables i el seu paper en models econòmics més complexes.

5. Representar geomètricament funcions de dues variables fent ús dels mapes de corbes de nivell.

6. Entendre la noció de límit d'una funció en un punt i de funció contínua.

7. Entendre el Teorema de Weierstrass.

8. Familiaritzar l'estudiant amb les derivades parcials de les funcions de diferents variables i amb el concepte de diferenciabilitat.

9. Utilitzar les derivades parcials per a l'obtenció del pendent de la corba de nivell en un punt i per a realitzar exercicis d'estàtica comparativa.

10. Resoldre problemes d'optimització sense restriccions i amb restriccions d'igualtat.


Competències

    Administració i Direcció d'Empreses
  • Aplicar els instruments matemàtics per sintetitzar situacions econòmiques i empresarials complexes.
  • Capacitat de comunicació oral i escrita en català, castellà i anglès, que permeti sintetitzar i presentar oralment i per escrit la feina feta.
  • Demostrar que es comprèn el llenguatge matemàtic i alguns mètodes de demostració.
  • Organitzar la feina, pel que fa a una bona gestió del temps i a la seva ordenació i planificació.
  • Utilitzar les tecnologies de la informació disponibles i adaptar-se als nous entorns tecnològics.
    Economia
  • Aplicar els instruments matemàtics per sintetitzar situacions econòmiques i empresarials complexes.
  • Capacitat de comunicació oral i escrita en català, castellà i anglès, que permeti sintetitzar i presentar oralment i per escrit la feina feta.
  • Capacitat de continuar aprenent en el futur de manera autònoma, aprofundint els coneixements adquirits o iniciant-se en noves àrees de coneixement.
  • Demostrar que es comprèn el llenguatge matemàtic i alguns mètodes de demostració.
  • Iniciativa i capacitat de treballar autònomament quan la situació ho demani.
  • Organitzar la feina, pel que fa a una bona gestió del temps i a la seva ordenació i planificació.
  • Que els estudiants hagin demostrat que comprenen i tenen coneixements en una àrea d'estudi que parteix de la base de l'educació secundària general, i se sol trobar a un nivell que, si bé es basa en llibres de text avançats, inclou també alguns aspectes que impliquen coneixements procedents de l'avantguarda d?'aquell camp d'estudi.
  • Que els estudiants hagin desenvolupat aquelles habilitats d'aprenentatge necessàries per emprendre estudis posteriors amb un alt grau d'autonomia.
  • Que els estudiants puguin transmetre informació, idees, problemes i solucions a un públic tant especialitzat com no especialitzat.
  • Que els estudiants sàpiguen aplicar els coneixements propis a la seva feina o vocació d'una manera professional i tinguin les competències que se solen demostrar per mitjà de l'elaboració i la defensa d'arguments i la resolució de problemes dins de la seva àrea d'estudi.
  • Utilitzar les tecnologies de la informació disponibles i adaptar-se als nous entorns tecnològics.

Resultats d'aprenentatge

  1. Aplicar els teoremes de la funció inversa i de la funció implícita a problemes concrets.
  2. Calcular derivades de funcions mitjançant la regla de la cadena, el teorema de la funció implícita, etc.
  3. Calcular determinants i descomposicions de matrius.
  4. Calcular i estudiar extrems de funcions.
  5. Capacitat de comunicació oral i escrita en català, castellà i anglès, que permeti sintetitzar i presentar oralment i per escrit la feina feta.
  6. Capacitat de continuar aprenent en el futur de manera autònoma, aprofundint els coneixements adquirits o iniciant-se en noves àrees de coneixement.
  7. Classificar matrius i aplicacions lineals segons diversos criteris (rang, formes diagonal i de Jordan).
  8. Conèixer els resultats bàsics del càlcul diferencial en diverses variables reals.
  9. Iniciativa i capacitat de treballar autònomament quan la situació ho demani.
  10. Organitzar la feina, pel que fa a una bona gestió del temps i a la seva ordenació i planificació.
  11. Plantejar i resoldre analíticament problemes d'optimització en l'àmbit de l'economia.
  12. Que els estudiants hagin demostrat que comprenen i tenen coneixements en una àrea d'estudi que parteix de la base de l'educació secundària general, i se sol trobar a un nivell que, si bé es basa en llibres de text avançats, inclou també alguns aspectes que impliquen coneixements procedents de l'avantguarda d?'aquell camp d'estudi.
  13. Que els estudiants hagin desenvolupat aquelles habilitats d'aprenentatge necessàries per emprendre estudis posteriors amb un alt grau d'autonomia.
  14. Que els estudiants puguin transmetre informació, idees, problemes i solucions a un públic tant especialitzat com no especialitzat.
  15. Que els estudiants sàpiguen aplicar els coneixements propis a la seva feina o vocació d'una manera professional i tinguin les competències que se solen demostrar per mitjà de l'elaboració i la defensa d'arguments i la resolució de problemes dins de la seva àrea d'estudi.
  16. Resoldre i discutir sistemes d'equacions lineals.
  17. Treballar amb diferents bases d'espais vectorials de dimensió finita.
  18. Utilitzar les tecnologies de la informació disponibles i adaptar-se als nous entorns tecnològics.

Continguts

PART I. ÀLGEBRA LINEAL

Tema 1. ÀLGEBRA DE VECTORS I MATRIUS

1.1. Sistemes d'equacions lineals

1.2 Operacions amb matrius i vectors

1.2. Dependència i independència lineal de vectors

1.3. Propietats de les operacions bàsiques i les interpretacions geomètriques

1.4. Norma i distància euclidiana

1.5. Conjunts, línies i plans

Tema 2CÀLCUL MATRICIAL

2.1. Matrius, determinants, matrius inverses i rang

2.2. Resolució de sistemes d’equacions amb matrius

PART II. FUNCIONS DE VÀRIES VARIABLES

Tema 3ESTUDI DE FUNCIONS DE VARIES VARIABLES

3.1. Característiques de les funcions de varies variables

3.2. Representació geomètrica

3.3. Superfícies i distàncies

3.4. Corbes de nivell

Tema 4DERIVADES PARCIALS I FUNCIONS DIFERENCIABLES

4.1. Derivada de una funció en un punt en la direcció d'un vector unitari

4.2. Derivades parcials

4.3. Gradient de la funció en un punt. Interpretació geomètrica i derivades direccionals

4.4. Funcions diferenciables. Continuïtat de les funcions derivades parcials

4.5. Regla de la cadena

4.6 Derivades parcials de combinacions lineals i de formes quadràtiques

4.7 Aproximacions de Taylor de primer i segon ordre

Tema 5TEOREMA DE LA FUNCIÓ IMPLÍCITA I TEOREMA DE LA FUNCIÓ INVERSA

5.1. Teorema de la funció implícita

5.2. Teorema de la funció inversa

5.3. Aplicacions i intuïcions geomètriques

PART III. OPTIMITZACIÓ AMB VÀRIES VARIABLES

Tema 6OPTIMITZACIÓ SENSE RESTRICCIONS

6.1. Òptims locals i globals

6.2. Condicions de primer i segon ordre per dels òptims locals

6.3. Òptims globals de funcions còncaves i convexes

Tema 7OPTIMITZACIÓ AMB RESTRICCIONS

7.1. Programes de maximització i minimització amb restriccions d'igualtat

7.2. Òptims restringits locals. Teorema de Lagrange

7.3. Òptims restringits globals de funcions còncaves i convexes

7.4 Teorema de Weierstrass

 


Activitats formatives i Metodologia

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classes de teoria 32,5 1,3 11, 1, 4, 2, 3, 7, 8, 16, 17
Preparació i resolució d'exercisis 17 0,68 5, 11, 1, 4, 2, 3, 6, 7, 9, 8, 10, 16, 18, 17
Tipus: Supervisades      
Seguiment del treball a realitzar 3 0,12 5, 11, 1, 4, 2, 3, 6, 7, 9, 8, 10, 16, 18, 17
Tutories 7 0,28 5, 11, 1, 4, 2, 3, 6, 7, 9, 8, 10, 16, 18, 17
Tipus: Autònomes      
Estudi 45 1,8 11, 1, 4, 2, 3, 6, 7, 9, 8, 10, 16, 18, 17
Preparació i resolució d'exercicis 40 1,6

Les activitats que permetran l'assimilació per part de l'alumne dels conceptes bàsics del curs seran:

1. Classes teòriques on els professors desenvoluparan els principals conceptes.

L'objectiu d'aquesta activitat és presentar les nocions fonamentals i facilitar l'aprenentatge de l'alumne posant èmfasi en les aplicacions econòmiques de les matemàtiques apreses.

2. Docència tutelada on els professors aplicaran els conceptes estudiats a famílies concretes de funcions de diferents variables.

L'objectiu d'aquesta activitat és potenciar la independència de l'alumne en el procés d'aprenentatge aplicant els conceptes teòrics a famílies de funcions de varies variables.

3. Resolució de llistes de problemes per part dels alumnes

Cada tema tindrà associat una llista de problemes que haurà de ser resolta de manera autònoma. L'objectiu d'aquesta activitat es doble, ja que per una banda pretén que l'alumne assimili els conceptes teòrics exposats a classe i per l'altra que adquireixi la destresa necessària per a resoldre problemes.

Es potenciarà la resolució cooperativa de problemes, en el marc de grups de treball de 3 o 4 estudiants, que siguin estables durant tot el semestre, i que col·laborin en el treball en equip per a superar dificultats que puguin tenir alguns dels seus components.

4. Classes de problemes on es discutirà la resolució dels problemes

Aquesta activitat té com a finalitat comentar i resoldre elsdubtes que els alumnes hagin pogut tenir durant la resolució dels problemes per tal que aquests puguin entendre i al mateix temps corregir els possibles errors comesos.

5. Tutories presencials

L'alumne disposarà d'unes hores on els professors del'assignatura podran resoldre els dubtes de manera presencial.

 

La metodologia docent proposada pot experimentar alguna modificació en funció de les restriccions a la presencialitat que imposin les autoritats sanitàries.

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Avaluació

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Activitats entregables i d'avaluaci? continuada 20% 2 0,08 5, 11, 1, 4, 2, 3, 6, 7, 9, 8, 10, 16, 15, 14, 13, 12, 18, 17
Examen final 50% 2 0,08 11, 1, 4, 2, 3, 7, 8, 16, 17
Examen parcial 30% 1,5 0,06 11, 1, 4, 2, 3, 7, 8, 16, 17

Aquesta assignatura/mòdul no preveu el sistema d’avaluació única.

 

Criteris d'avaluació 

La nota de l’examen parcial representarà un 30% de la qualificació mitjana de l’assignatura.

La nota de l'examen final representarà un 50% de la qualificació mitjana de l’assignatura.

La nota del lliurament d'exercicis, treballs i/o proves al laboratori representarà un 20% de la qualificació mitjana de l’assignatura

Per tant, la qualificació mitjana de l’assignatura s'obté com:

qualificació mitjana de l’assignatura = 30% (nota de l’examen parcial) +
                                                           + 50% (
nota de l’examen final<spanstyle="color: #000000;">) +
                                                           + 20% (nota exercicis/treballs/proves lab 

L'assignatura es considerarà superada si escompleixen els dos requisits següents:  

  1. la qualificació mitjana de l'assignatura és igual o superior a 5 i,
  2. la nota de l’examen final és igual o superior a 3.
  • Si un/una estudiant compleix el primer requisit però no compleix el segon tindrà una qualificació mitjana de l'assignatura de 4,5 i podrà anar a la prova de re-avaluació d’acord amb el que s’estableix a l’apartat “Procés de Recuperació” que trobareu més endavant.
  • Si un/una estudiant compleix el segon requisit però no compleix el primer, o no compleix cap dels dos, podrà anar a la prova de re-avaluació d’acord amb el que s’estableix a l’apartat “Procés de Recuperació” que trobareu més endavant.

Un alumne que no hagi participat en cap de les activitats d'avaluació es considerarà "No avaluable"

 

Calendari d’activitats d’avaluació

Les dates de les diferents proves d'avaluació (exercicis en aula, entrega de treballs, ...) s'anunciaran amb suficient antelació durant el semestre.

La data de l'examen parcial i final de l'assignatura està programada en el calendari d'exàmens de la Facultat.

"La programació de les proves d’avaluació no es podrà modificar, tret que hi hagi un motiu excepcional i degudament justificat pel qual no es pugui realitzar un acte d’avaluació. En aquest cas, les persones responsables de les titulacions, prèvia consulta al professorat i a l’estudiantat afectat, proposaran una nova programació dins del període lectiu corresponent". Apartat 1 de l'Article 264. Calendari de les activitats d’avaluació (Normativa Acadèmica UAB)

Els estudiants i les estudiantes de la Facultat d'Economia i Empresa que d'acord amb el paràgraf anterior necessitin canviar una data d'avaluació han de presentar la petició omplint el següent formulari: e-Formulari per a la reprogramació de proves

Procediment de revisió de les qualificacions

Coincidint amb l'examen final s'anunciarà el dia i el mitjà en quees publicaran les qualificacions finals. De la mateixa manera s'informarà del procediment, lloc, data i hora de la revisió d'exàmens d'acord amb la normativa de la Universitat.

Procés de Recuperació

"Per participar a la recuperació l'alumnat ha d'haver estat prèviament avaluat en un conjunt d'activitats el pes de les qual equivalgui a un mínim de dues terceres parts de la qualificació total de l'assignatura". Apartat 2 de l'Article 261. La recuperació (Normativa Acadèmica UAB). Els estudiants i les estudiants han d'haver obtingut una qualificació mitjana de l’assignatura més gran o igual que 3,5 i menor que 5.

La data d’aquesta prova estarà programada en el calendari d'exàmens de la Facultat. L'estudiant que es presenti i la superi aprovarà l'assignatura amb una nota de 5. En cas contrari mantindrà la mateixa nota.

Irregularitats en actes d’avaluació

Sense perjudici d'altres mesures disciplinàries que s'estimin oportunes, i d'acord amb la normativa acadèmica vigent, "en cas que l’estudiant realitzi qualsevol irregularitat que pugui conduir a una variació significativa de la qualificació d’un acte d’avaluació, s'ha de qualificar amb 0 aquest acte d’avaluació, amb independència del procés disciplinari que s’hi pugui instruir. En cas que es produeixin diverses irregularitats en els actes d’avaluació d’una mateixa assignatura, la qualificació final d’aquesta assignatura és 0".  Apartat 11 de l'Article 266. Resultats de l'avaluació. (Normativa Acadèmica UAB).

Codi d’honor:

Sense perjudici d'altres mesures disciplinàries que s'estimin oportunes, i d'acord amb la normativa acadèmica vigent, es qualificaran amb un zero les irregularitats comeses per l'estudiant que puguin conduir a una variació de la qualificació d'un acte d'avaluació. Per tant, copiar o deixar copiar una pràctica o qualsevol altra activitat d'avaluació implicarà suspendre-la amb un zero,isiés necessari superar-laper aprovar, tota l'assignatura quedarà suspesa. No seran recuperables les activitats d'avaluació qualificades d'aquesta forma i per aquest procediment, i per tant l'assignatura serà suspesa directament sense oportunitat de recuperar-la en el mateix curs acadèmic.


Bibliografia

Bibliografia bàsica

Sydsaeter, K., P.J. Hammond, i A. Carvajal, 2012, Matemáticas para el Análisis Económico. Ed. Prentice Hall, Madrid. (disponible online a biblioteca)

Aquest és un manual de gran acceptació i tradició i que gràcies a les seves renovades edicions ha aconseguit ser un referent. A més, cobreix el temari de l'assignatura Matemàtiques per a Economistes I. És un text complet, assequible i dirigit a les aplicacions econòmiques.

Els mateixos autors tenen un altre llibre de nivell una mica més senzill, només en anglès. També és una bona opció com llibre principal, per a la gent que llegeix anglès:

Sydsaeter, K. and P.J. Hammond, 2012, Essential Mathematics for Economic Analysis. Fourth edition. Pearson Education. (disponible online biblioteca UAB)

 

Bibliografia complementària

Els manuals que es detallen a continuació poden ser de gran utilitat a per l'alumne, ja sigui perquè desitgi complementar les explicacions exposades en el manual de referència o perquè vulgui ampliar els seus coneixements.

Alegre, P., L. Jorba, F.J. Orti, G. Rodriguez, J.B. Saez, T. Sancho i A. Terceño, 2000, Ejercicios Resueltos de Matemáticas Empresariales II. Editorial Alfacentauro, Madrid.

Besada, M., F.J. García, M.A. Mirás i M.C. Vázquez, 2001, Cálculo de varias variables. Cuestiones y ejercicios resueltos, Ed. Prentice Hall, Madrid.

Chiang, A.C., 2006, Métodos Fundamentales de Economía Matemàtica, Ed. McGraw-Hill, Madrid.

Larson, R.i R. Hostetler i B. Edwards, 2006, Cálculo II de varias variables, Ed. Mc Graw Hill, Méjico.

Al web de l'assignatura al campus virtual s'afegirà material complementari a criteri del professorat de la mateixa.


Programari

_


Llista d'idiomes

Nom Grup Idioma Semestre Torn
(PAUL) Pràctiques d'aula 1 Espanyol segon quadrimestre matí-mixt
(PAUL) Pràctiques d'aula 2 Català segon quadrimestre matí-mixt
(PAUL) Pràctiques d'aula 4 Anglès segon quadrimestre matí-mixt
(PAUL) Pràctiques d'aula 8 Anglès segon quadrimestre matí-mixt
(PAUL) Pràctiques d'aula 51 Català segon quadrimestre tarda
(PAUL) Pràctiques d'aula 52 Català segon quadrimestre tarda
(PAUL) Pràctiques d'aula 60 Espanyol segon quadrimestre matí-mixt
(TE) Teoria 1 Espanyol segon quadrimestre matí-mixt
(TE) Teoria 2 Català segon quadrimestre matí-mixt
(TE) Teoria 4 Anglès segon quadrimestre matí-mixt
(TE) Teoria 8 Anglès segon quadrimestre matí-mixt
(TE) Teoria 51 Català segon quadrimestre tarda
(TE) Teoria 52 Català segon quadrimestre tarda
(TE) Teoria 60 Espanyol segon quadrimestre matí-mixt