Logo UAB

Tècniques de recerca

Codi: 101102 Crèdits: 6
2024/2025
Titulació Tipus Curs
2500259 Ciència política i gestió pública OB 3

Professor/a de contacte

Nom:
Danislava Milkova Marinova
Correu electrònic:
dani.marinova@uab.cat

Idiomes dels grups

Podeu consultar aquesta informació al final del document.


Prerequisits

S’assumeix que l’estudiant ha adquirit prèviament les nocions bàsiques de metodologia de la recerca. És molt recomanable haver superat l’assignatura obligatòria de Metodologia de l’Anàlisi Política. L’estudiant ha de poder llegir en anglès i treballar amb fulls de càlcul (Excel).


Objectius

L’objectiu del curs és que l’estudiant es familiaritzi amb les principals tècniques d’anàlisi de dades i aprengui a utilitzar-les. La major part del curs està dedicada a l’anàlisi de regressió lineal i les seves extensions. S’eviten les qüestions matemàtiques i es posa l’èmfasi en la formació pràctica i la interpretació de resultats. Alhora, s’introdueix l’estudiant en l´ús del llenguatge de programació estadística R a través d’RStudio, amb l’objectiu de reforçar l’aprenentatge d’habilitats relacionades amb la gestió, exploració i visualització de dades, la reproductibilitat de l’anàlisi i la comunicació efectiva dels resultats. Al llarg del curs es treballarà amb dades reals d’interès social i polític i es fomentarà la utilització crítica i responsable de dades obertes.


Competències

  • Actuar amb responsabilitat ètica i amb respecte pels drets i deures fonamentals, la diversitat i els valors democràtics.
  • Actuar en l'àmbit de coneixement propi avaluant les desigualtats per raó de sexe/gènere.
  • Actuar en l'àmbit de coneixement propi valorant l'impacte social, econòmic i mediambiental.
  • Aplicar les diferents tècniques d'anàlisi del comportament i actors polítics a casos reals de l'esfera política interna i internacional.
  • Aplicar les principals teories de la disciplina i els seus diferents camps a problemes pràctics i professionals reals.
  • Argumentar des de diferents perspectives teòriques.
  • Demostrar que es comprèn la lògica de l'anàlisi científica aplicada a les ciències polítiques.
  • Demostrar un bon nivell d'expressió escrita en diferents registres.
  • Desenvolupar estratègies d'aprenentatge autònom.
  • Desenvolupar un pensament i un raonament crític i saber comunicar-se de manera efectiva, tant en les llengües pròpies com en una tercera llengua.
  • Dissenyar tècniques per a la recollida de dades, coordinar el tractament de la informació i aplicar rigorosament mètodes de verificació d'hipòtesis.
  • Fer exposicions orals efectives i adaptades a l'audiència.
  • Gestionar la distribució del temps disponible per assolir els objectius establerts per portar a terme la tasca prevista.
  • Interpretar i utilitzar acadèmicament textos en anglès.
  • Introduir canvis en els mètodes i els processos de l'àmbit de coneixement per donar respostes innovadores a les necessitats i demandes de la societat.
  • Mostrar una bona capacitat per transmetre informació, diferenciant els missatges clau per als diferents destinataris.
  • Sintetitzar i analitzar informació de manera crítica.
  • Treballar amb tècniques quantitatives i qualitatives d'anàlisi per aplicar-les en els processos de recerca.
  • Treballar autònomament.
  • Utilitzar els fonaments metodològics en les ciències polítiques.
  • Utilitzar les principals tècniques de la informació i la documentació (TIC) com a eina essencial en l'anàlisi.

Resultats d'aprenentatge

  1. Actuar amb responsabilitat ètica i amb respecte pels drets i deures fonamentals, la diversitat i els valors democràtics.
  2. Actuar en l'àmbit de coneixement propi avaluant les desigualtats per raó de sexe/gènere.
  3. Actuar en l'àmbit de coneixement propi valorant l'impacte social, econòmic i mediambiental.
  4. Analitzar bases de dades polítiques utilitzant en cada cas les tècniques bàsiques apropiades de l'estadística descriptiva i l'estadística inferencial.
  5. Aplicar les tècniques estadístiques corresponents als diferents estudis de cas i interpretar els resultats obtinguts.
  6. Argumentar des de diferents perspectives teòriques.
  7. Demostrar que es comprèn la lògica de l'anàlisi científica aplicada a les ciències polítiques.
  8. Demostrar un bon nivell d'expressió escrita en diferents registres.
  9. Desenvolupar estratègies d'aprenentatge autònom.
  10. Desenvolupar un pensament i un raonament crític i saber comunicar-se de manera efectiva, tant en les llengües pròpies com en una tercera llengua.
  11. Dissenyar i planificar una recerca en l'àmbit de la ciència política.
  12. Dissenyar tècniques per a la recollida de dades, coordinar el tractament de la informació i aplicar rigorosament mètodes de verificació d'hipòtesis.
  13. Fer exposicions orals efectives i adaptades a l'audiència.
  14. Fer servir eines informàtiques per recollir, importar, manipular, visualitzar, descriure i modelar dades de tota mena i presentar-ne els resultats.
  15. Gestionar la distribució del temps disponible per assolir els objectius establerts per portar a terme la tasca prevista.
  16. Interpretar i utilitzar acadèmicament textos en anglès.
  17. Introduir canvis en els mètodes i els processos de l'àmbit de coneixement per donar respostes innovadores a les necessitats i demandes de la societat.
  18. Mostrar una bona capacitat per transmetre informació, diferenciant els missatges clau per als diferents destinataris.
  19. Sintetitzar i analitzar informació de manera crítica.
  20. Treballar amb tècniques quantitatives i qualitatives d'anàlisi per aplicar-les en els processos de recerca.
  21. Treballar autònomament.
  22. Utilitzar els fonaments metodològics en les ciències polítiques.
  23. Utilitzar les principals tècniques de la informació i la documentació (TIC) com a eina essencial en l'anàlisi.
  24. Valorar críticament l'ús de l'instrumental analític per a la validació de les hipòtesis plantejades.
  25. Valorar críticament l'ús dels mètodes inductiu, deductiu i comparatiu.

Continguts

1. Visualització i anàlisi exploratòria de dades
2. Gestió de dades
3. Regressió lineal simple
4. Regressió múltiple
5. Variables independents categòriques
6. Interaccions
7. Regressió amb variables dependents categòriques


Activitats formatives i Metodologia

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Activitats expositives 30 1,2 6, 25, 24, 8, 7, 11, 12, 15, 22, 13, 18, 19, 23, 20
Exercicis i pràctiques a l'aula 19,5 0,78 6, 25, 24, 8, 7, 11, 12, 15, 22, 13, 18, 19, 23, 21, 20
Tipus: Supervisades      
Tutories 15 0,6 6, 25, 24, 8, 7, 11, 12, 15, 22, 13, 18, 19, 23, 21, 20
Tipus: Autònomes      
Estudi 83,5 3,34 6, 25, 24, 8, 7, 11, 12, 15, 22, 18, 19, 23, 21, 20

Les sessions presencials inclouen dos tipus d’activitats:

  1. Activitats expositives per part del professorat
  2. Resolució d’exercicis i pràctiques a l’aula

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Avaluació

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Examen final 40% 0 0 1, 4, 5, 6, 3, 25, 24, 8, 7, 11, 12, 10, 9, 16, 17, 15, 22, 18, 19, 2, 14, 23, 21, 20
Examen parcial 20% 2 0,08 1, 4, 5, 25, 24, 7, 11, 10, 9, 15, 22, 14, 21
Exercicis a l'aula 10% 0 0 6, 25, 24, 8, 7, 11, 12, 15, 22, 13, 18, 19, 23, 21, 20
Pràctiques avaluables 30% 0 0 6, 25, 24, 8, 7, 11, 12, 15, 22, 13, 18, 19, 23, 21, 20

L’avaluació es realitzarà en funció dels resultats de les activitats següents:

  • Exercicis a l'aula (10%). Per aprovar un exercici, cal haver assistit a la sessió corresponent. No s’acceptaran lliuraments fora del termini fixat. Aquesta part de l’avaluació en cap cas és recuperable.
  • Pràctiques avaluables (30%). Per aprovar una pràctica, cal haver assistit a la sessió corresponent. No s’acceptaran lliuraments fora del termini fixat. Aquesta part de l’avaluació en cap cas és recuperable.
  • Examen parcial (20%). Prova escrita amb ordinador, en la qual es permetrà consultar el material del curs.
  • Examen final (40%). Prova escrita sobre el contingut del curs, en la que no es permetrà consultar cap tipus de material d’ajuda.

Per superar l’assignatura, cal que es compleixin alhora tots els requisits següents:

1. Haver estat prèviament avaluat en un conjunt d'activitats el pes de les quals equivalgui a un mínim de dues terceres parts de la qualificació total de l'assignatura.

2. Tenir una qualificació global de l’assignatura igual o superior a 5.

3. Tenir una qualificació a l’examen final igual o superior a 4.

Recuperació

Només l’examen final és recuperable; els exercicis a l’aula i les pràctiques estan excloses del procés de recuperació.

Per participar a la recuperació, cal que es compleixin els dos requisits següents:

1. Haver estat prèviament avaluat en un conjunt d’activitats el pes de les quals equivalgui a un mínim de dues terceres parts de la qualificació total de l'assignatura.

2. Tenir una qualificació global de l’assignatura igual o superior a 3.5.

Altres consideracions

El fet de presentar-se a l’examen o lliurar qualsevol pràctica o exercici eximeix l’estudiant de la qualificació de “No Presentat”.

D’acord amb l’article 117.2 de la Normativa acadèmica de la UAB, l’avaluació de l'alumnat repetidor podrà consistir, a decisió del professor, en una sola prova de síntesi. L’alumnat repetidor que es vulgui acollir a aquesta possibilitat, caldrà que es posi en contacte amb el professorat a principi de curs (primera setmana d’octubre com a molt tard). 

En cas de detectar-se plagi o qualsevol altra irregularitat que pugui conduir a una variació significativa de la qualificació d’un acte d’avaluació, es qualificarà amb 0 aquest acte d’avaluació. En cas que es produeixin diverses irregularitats en els actes d’avaluació de l’assignatura, la qualificació final d’aquesta serà 0.


Bibliografia

Bàsica

  • Chang, Winston. 2018. R Graphics Cookbook: Practical Recipes for Visualizing Data. Second edition. Beijing; Boston: O’Reilly. Accessible a: r-graphics.org.
  • Ismay, Chester, & Albert Young-Sun Kim. 2020. Statistical Inference via Data Science: A ModernDive into R and the Tidyverse. Chapman & Hall/CRC the R Series. Boca Raton: CRC Press / Taylor & Francis Group. Accessible a: moderndive.com.
  • Riba, Clara, & Anna Cuxart. 2013. Regresión Lineal Aplicada. Barcelona: Documenta Universitaria.
  • Wickham, Hadley, & Garrett Grolemund. 2016. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. Sebastopol, CA: O’Reilly. Accessible a: r4ds.had.co.nz. Versió en espanyol: es.r4ds.hadley.nz.

Programari

 


Llista d'idiomes

Nom Grup Idioma Semestre Torn
(SEM) Seminaris 1 Català primer quadrimestre matí-mixt
(SEM) Seminaris 51 Català primer quadrimestre tarda
(TE) Teoria 1 Català primer quadrimestre matí-mixt
(TE) Teoria 51 Català primer quadrimestre tarda