Titulació | Tipus | Curs |
---|---|---|
2500149 Matemàtiques | OB | 3 |
Podeu consultar aquesta informació al final del document.
Àlgebra lineal.
Fonaments de les matemàtiques.
Funcions de variable real.
Càlcul amb diverses variables i optimització.
La teoria d'Equacions Diferencials (ED's) es distingeix tant per la riquesa d'idees i mètodes com per la seva aplicabilitat. Així l'assignatura Equacions Diferencials i Modelització I té una vessant teòrica (que es treballarà a les classes de teoria i de problemes) i una vessant molt aplicada, que s'introduirà a les classes de teoria i que es practicarà tant a classes de problemes com a les classes pràctiques que es realitzaran al laboratori d'informàtica. D'una banda farem èmfasi en la presentació de la teoria i en la demostració dels resultats i d'altra banda els alumnes aprendran a modelar situacions reals que els permetin predir els comportaments estudiats.
A nivell formatiu pensem que aquesta assignatura és bona per mostrar als alumnes que certs resultats teòrics que ja coneixen d'altres matèries (propietats topol·lògiques dels espais normats i Teorema de la forma canònica de Jordan, per exemple) s'apliquen a l'hora de fonamentar la teoria d'equacions diferencials per finalment poder donar resposta a preguntes motivades per problemes aplicats que venen regits per models deterministes.
1. Equacions diferencials de primer ordre en una variable.
1.1 Introducció a les equacions diferencials. Mètodes de resolució: equacions separables, lineals, exactes, factors integrants. Canvi de variable.
1.2 Aplicacions: Desintegració radioactiva, problemes de barreges, models de poblacions, etc.
2. Equacions lineals.
2.1 Propietats generals de les equacions diferencials lineals: Existència i unicitat de solucions per al problema de Cauchy, estructura de l'espai de solucions de les equacions lineals, matrius fonamentals.
2.2 Sistemes d'equacions lineals a coeficients constants: Exponencial d'una matriu. Càlcul de l'exponencial de les matrius canòniques de Jordan. El cas no homogeni.
2.3 L'equació lineal d'ordre n: Propietats generals. Les equacions homogènies a coeficients constants. Càlcul de solucions particulars per a la no homogènia.
2.4 L'equació lineal d'ordre 2: Sistemes mecànics, circuits elèctrics, oscil·lacions periòdiques forçades. El fenomen de la ressonància.
3. Els Teoremes Fonamentals.
3.1 L'espai de funcions contínues i acotades sobre un espai topològic: Existència i unicitat de solucions, interval màxim de les solucions, estructura de l'espai de solucions, matrius fonamentals.
3.2 Teoremes de Picard i de Peano: Funcions localment lipschitzianes. Existència i unicitat locals. Stone-Weierstrass i demostració de Peano.
3.3 Prolongació de solucions: Existència i unicitat de solucions improrogables per a problemes amb existència i unicitat de solucions. El Lema de Wintner.
3.4 Dependència contínua i diferenciable de les solucions respecte de condicions inicials i paràmetres: Enunciat dels teoremes i exemples.
4. Teoria qualitativa de sistemes autònoms.
4.1 Sistema dinàmic induït per una equació diferencial autònoma. Punts crítics i òrbites periòdiques. Estabilitat. Equivalència i conjugació.
4.2 Teorema del flux tubular. Teorema de Hartman.
4.3 Estudi qualitatiu de les equacions lineals.
Títol | Hores | ECTS | Resultats d'aprenentatge |
---|---|---|---|
Tipus: Dirigides | |||
Classes de teoria | 30 | 1,2 | |
Pràctiques de modelització | 24 | 0,96 | |
Tipus: Supervisades | |||
Classes de problemes | 30 | 1,2 | |
Tipus: Autònomes | |||
Estudi de la teoria i resolució de problemes | 114 | 4,56 |
En el procés d'aprenentatge de la matèria és fonamental el treball de l'alumne, que en tot moment disposarà de l'ajut del professor.
Distingim entre tres tipus d'activitats dirigides:
Classes de Teoria: El professor introdueix els conceptes bàsics corresponents a la matèria de l'assignatura mostrant el seu significat i utilitat. L'alumne haurà de complementar les explicacions del professor amb l'estudi personal.
Classes de Problemes: Es treballa la comprensió i aplicació dels conceptes i eines introduïts a teoria, amb la realització d'exercicis teòrics i/o pràctics.
Classes de Pràctiques: es dedicaran a estudiar els mètodes i eines de resolució d'EDOS amb tot detall, amb ordinador o sense.
Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.
Títol | Pes | Hores | ECTS | Resultats d'aprenentatge |
---|---|---|---|---|
Entrega de pràctiques | 20% | 15 | 0,6 | 5, 4, 3, 6, 7 |
Examen de recuperació | 80% | 4 | 0,16 | 2, 1, 5, 4, 6 |
Primer examen parcial | 35% | 4 | 0,16 | 2, 1, 5, 4, 6 |
Segon examen parcial | 45% | 4 | 0,16 | 2, 1, 5, 4, 6 |
L'avaluació unica consistirà en un únic examen de tota la matèria el dia del segon examen parcial, que ponderà el 100% de la nota.
Avaluació continuada: Constarà de les següents activitats d'avaluació
Examen de recuperació: consistirà en un examen de tota la matèria que substitueix els dos examens parcials.
NOTA: Cap dels dos examens parcials allibera materia a l'examen de recuperació. Com s'ha dit abans, l'examen de recuperació pondera el 80% de la nota.
Els continguts del curs estan coberts en gran part pels Apunts de Francesc Mañosas, que serà penjada a la aula moodle. La bibliioteca de la Facultat de Ciències disposa d'un fons biliogràfic de Matemàtiques excepcional, així que és molt recomanable que useu aquests recursos, ja sigui per buscar altres llibres de consulta o per aprofundir i ampliar coneixements. Les referències citades a sota són complementàries i tan sols indicatives.
P. Blanchard, and R.L. Devaney. Differential Equations. G.R. Hall, 2002. Traduït al castellà: "Ecuaciones Diferenciales". International Thomson Editores, México, 1999.
E. Boyce, y R.C. Di Prima. Ecuaciones Diferenciales y Problemas con Valores en la Frontera. Ed. Limusa, México, 1967.
R.L. Borrelli and C.S. Coleman. Differential equations: a modeling perspective. Prentice-Hall, 1987.
M. Braun. Ecuaciones diferenciales y sus aplicaciones. Grupo Editorial Iberoamérica. México, 2000.
R. Cubarsí. Equacions diferencials i la transformada de Laplace. Iniciativa Digital Politècnica, 2012. (http://hdl.handle.net/2099.3/36610)
C. Fernandez y J.M. Vegas. Ecuaciones diferenciales. Pirámide, Madrid, 1996.
G. Fulford, P. Forrester, A. Jones. Modelling with differential and difference equations. Cambridge University Press, New York, 1997.
M. Guzmán. Ecuaciones diferenciales ordinarias. Ed. Alhambra, Madrid, 1978.
M. W. Hirsch , S. Smale, R. Devaney. Differential Equations, Dynamical Systems: An Introduction to Chaos. Elsevier, 2003.
V. Jimenez. Ecuaciones diferenciales. Serie: enseñanza. Universidad de Murcia, 2000.
M.C. Leseduarte, M. D. Llongueras, A. Magaña, R. Quintanilla de Latorre. Equacions Diferencials: Problemes resolts. Iniciativa Digital Politècnica, 2012. (http://hdl.handle.net/2099.3/36607)
F. Mañosas. Apunts d'Equacions diferencials. Campus virtual.
R. Martínez. Models amb Equacions Diferencials. Materials de la UAB, Servei de Publicacions de la UAB, no. 149. Bellaterra, 2004.
R.K. Nagle, E.B. Saff and A.D. Snyder. Fundamentos de Ecuaciones diferenciales. Addison Wesley, 1992.
C. Perelló. Càlcul infinitesimal amb mètodes numèrics i aplicacions. Enciclopèdia Catalana, 1994.
G.F. Simmons. Ecuaciones diferenciales con aplicaciones y notas históricas. Mc Graw-Hill, 1977.
H. Ricardo. Ecuaciones diferenciales: una introducción moderna. Editorial Reverté, Barcelona, 2008.
D.G. Zill. Ecuaciones diferenciales con aplicaciones de modelado. International Thomson Editores,México, 2001.
Qualsevol que tingui relació amb les equacions diferencials.
Nom | Grup | Idioma | Semestre | Torn |
---|---|---|---|---|
(PAUL) Pràctiques d'aula | 1 | Català | primer quadrimestre | matí-mixt |
(PAUL) Pràctiques d'aula | 2 | Català | primer quadrimestre | matí-mixt |
(PLAB) Pràctiques de laboratori | 1 | Català | primer quadrimestre | matí-mixt |
(PLAB) Pràctiques de laboratori | 2 | Català | primer quadrimestre | matí-mixt |
(TE) Teoria | 1 | Català | primer quadrimestre | matí-mixt |