Logo UAB
2022/2023

Estadística en las Ciencias de la Salud

Código: 104873 Créditos ECTS: 6
Titulación Tipo Curso Semestre
2503852 Estadística Aplicada OB 3 1

Contacto

Nombre:
Jose Barrera Gomez
Correo electrónico:
jose.barrera@uab.cat

Uso de idiomas

Lengua vehicular mayoritaria:
español (spa)
Algún grupo íntegramente en inglés:
No
Algún grupo íntegramente en catalán:
No
Algún grupo íntegramente en español:
No

Prerequisitos

Se asume que el alumnado está familiarizado con las distribuciones binomial y normal, así como con la utilización de R.

Objetivos y contextualización

Los objetivos principales del curso son:

- Conocer los principales tipos de diseños de estudio en el ámbito de la epidemiología.

- Conocer el impacto potencial de los datos faltantes y del error de medida sobre los resultados de un análisis estadístico.

- Conocer los principales indicadores para medir la presencia de una enfermedad o una exposición.

- Conocer los principales indicadores para medir la asociación entre la exposición y la enfermedad, especialmente en el caso de que la exposición y el indicador de salud sean binarios.

- Ser capaz de identificar las herramientas estadísticas adecuadas para la evaluación de la asociación entre una determinada exposición y un determinado indicador de salud, según las características del diseño del estudio, en el contexto de los estudios epidemiológicos.

- Conocer el diseño y la implementación de una prueba exacta según el diseño del estudio.

- Conocer el diseño y la implementación de simulaciones relacionadas con conceptos como el poder empírico o el cálculo del tamaño de la muestra.

- Ser capaz de buscar artículos científicos con PubMed de manera eficiente.

- Familiarizarse con la lectura de artículos científicos.

- Saber aplicar los conceptos estudiados en la asignatura para resolver ejercicios basados en datos epidemiológicos reales.

- Mejorar la eficiencia en la programación en R para resolver las tareas prácticas propuestas durante el curso.

- Ser capaz de escribir informes estadísticos reproducibles mediante LaTeX y el paquete knitr de R.

Competencias

  • Analizar datos mediante la aplicación de métodos y técnicas estadísticas, trabajando con datos de diversas tipologías.
  • Aplicar el espíritu crítico y el rigor para validar o refutar argumentos tanto propios como de otras personas.
  • Evaluar de manera crítica y con criterios de calidad el trabajo realizado.
  • Formular hipótesis estadísticas y desarrollar estrategias para confirmarlas o refutarlas.
  • Identificar la utilidad y la potencialidad de la estadística en las distintas áreas de conocimiento y saber aplicarla adecuadamente para extraer conclusiones relevantes.
  • Interpretar resultados, extraer conclusiones y elaborar informes técnicos en el campo de la estadística.
  • Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
  • Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
  • Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  • Seleccionar las fuentes y técnicas de adquisición y gestión de datos adecuadas para su tratamiento estadístico.
  • Seleccionar los modelos o técnicas estadísticas para aplicarlos a estudios y problemas reales, así como conocer las herramientas de validación de los mismos.
  • Seleccionar y aplicar procedimientos más apropiados para la modelización estadística y el análisis de datos complejos.
  • Trabajar cooperativamente en un contexto multidisciplinar asumiendo y respetando el rol de los diferentes miembros del equipo.
  • Utilizar correctamente un amplio espectro del software y lenguajes de programación estadísticos, escogiendo el más apropiado para cada análisis y ser capaz de adaptarlo a nuevas necesidades.
  • Utilizar eficazmente la bibliografía y los recursos electrónicos para obtener información.

Resultados de aprendizaje

  1. Analizar datos correspondientes a estudios epidemiológicos o ensayos clínicos.
  2. Aplicar el espíritu crítico y el rigor para validar o refutar argumentos tanto propios como de otros.
  3. Diseñar y llevar a cabo tests de hipótesis en los diferentes campos de aplicación estudiados.
  4. Elaborar informes técnicos que expresen claramente los resultados y las conclusiones del estudio utilizando vocabulario propio del ámbito de aplicación.
  5. Evaluar de manera crítica y con criterios de calidad el trabajo realizado.
  6. Extraer conclusiones coherentes con el contexto experimental propio de la disciplina, a partir de los resultados obtenidos.
  7. Identificar las técnicas de inferencia estadística más utilizadas en estudios de epidemiología.
  8. Interpretar los resultados estadísticos en contextos aplicados.
  9. Justificar la elección de cada método particular dentro del contexto en que se aplica.
  10. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
  11. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
  12. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  13. Realizar el muestreo más adecuado para estudios epidemiológicos.
  14. Reconocer la importancia de los métodos estadísticos estudiados dentro de cada aplicación particular.
  15. Reconocer las bases de datos más utilizadas en el ámbito de ciencias de la salud.
  16. Reconocer las ventajas e inconvenientes de las distintas metodologías estadísticas cuando se estudian datos procedentes de diversas disciplinas.
  17. Trabajar cooperativamente en un contexto multidisciplinar asumiendo y respetando el rol de los diferentes miembros del equipo.
  18. Utilizar distintos programas (tanto libres como comerciales) asociados a las distintas ramas aplicadas.
  19. Utilizar eficazmente bibliografía y recursos electrónicos para obtener información.

Contenido

*

1. Introducción a los contenidos. Introducción a la investigación reproducible mediante el paquete knitr de R.

2. PubMed: Buscando artículos científicos. Estructura de un artículo.

3. Clasificación de estudios

(a) Temas de bioestadística

(b) Estudios epidemiológicos

i. Notación

ii. Criterios de clasificación

iii. Tipo de diseño del estudio epidemiológico: ensayos epidemiológicos aleatorios, cohorte, caso-control, case-crossover, transversales, ecológicos

(c) Diagrama de clasificación de estudios

4. Clasificación de variables y modelos de regresión relacionados

(a) Según el tipo de medida

(b) Según el papel en el estudio

(c) Tipo de variables explicativas

(d) Tipo de modelos de regresión según la métrica de la variable respuesta

(e) Variables respuesta de tipo tiempo

5. Fuentes de información

(a) Información comunicada

i. Introducción

ii. Diseño de cuestionarios de salud

(b) Información medida

i. Introducción

ii. Comentarios

(c) El libro de códigos

6. Problemas derivados de la recopilación de información

(a) Datos faltantes

i. Introducción

ii. Tipo de datos faltantes

iii. Tratamiento de los datos faltantes

(b) Información sesgada

y. Introducción

ii. Algunas fuentes de sesgo

(c) Ejemplos del impacto del error de medida

7. Medidas de presencia de la enfermedad

(a) Introducción

(b) Prevalencia

i. Definición

ii. Estimación

iii. Comentarios

(c) Incidencia acumulada

y. definición

ii. Comentarios

(d) Tasa de incidencia

i. Definición

ii. Comentarios

iii. Comparación de dos tasas de incidencia

8. Medidas de asociación entre la exposición y la enfermedad

(a) Introducción

(b) El riesgo relativo

i. Definición

ii. Comentarios

(c) El odds ratio

i. El odds

ii. El odds ratio

iii. Comentarios

(d) Intervalos de confianza para OR y RR

(e) El riesgo atribuible

i. Riesgo atribuible a la población

ii. Riesgo atribuible a la exposición

9. Causalidad, confusión e interacción

(a) Introducción

(b) Causalidad

(c) Confusión

(d) Interacción

10. Toma de decisiones: pruebas de hipótesis

(a) Introducción

(b) Estableciendo una prueba de hipótesis

(c) Errores de tipo I y tipo II

(d) Decisión y errores

(e) Significación estadística. El p-valor

(f) El p-valor como herramienta de decisión

11. Potencia y tamaño de la muestra

(a) Concepto de potencia

(b) Comparaciones

i. De dos proporciones (prevalencias o riesgos)

ii. De dos tasas

iii. De dos odds

(c) Introducción a la estimación del tamaño de la muestra basada en la potencia empírica

*A menos que las restricciones impuestas por las autoridades sanitarias obliguen a una priorización o reducción de estos contenidos.

Metodología

*

- Sesiones teóricas: en estas sesiones, se presentan los diferentes conceptos del tema, así como ejemplos ilustrativos. Además, se propone resolver algunos ejercicios (que generalmente requieren el uso de R). La metodología se basa en la presentación y discusión de diapositivas, así como en la presentación de algunos materiales adicionales (principalmente noticias publicadas en medios en línea y artículos científicos buscados en PubMed).

- Sesiones prácticas: En estas sesiones, se propondrán varios ejemplos prácticos y ejercicios. Se desarrollarán actividades relacionadas con el uso de R, búsqueda en PubMed, lectura de artículos y análisis estadísticos. Algunos de los ejercicios propuestos serán de entrega obligatoria.

- Asistencia a seminarios: el Departamento de Matemáticas y el Servicio de Estadística de la UAB organizan seminarios de estadística. Los alumnos y el profesor asistirían a algunos de ellos, según el tema y el horario.

* La metodología docente propuesta puede experimentar alguna modificación en función de las restricciones a la presencialidad que impongan las autoridades sanitarias.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Actividades

Título Horas ECTS Resultados de aprendizaje
Tipo: Dirigidas      
Sesiones de teoría 28 1,12 1, 2, 5, 3, 4, 6, 13, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19
Tipo: Supervisadas      
Sesiones de prácticas 28 1,12 1, 2, 5, 3, 4, 6, 13, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19
Tipo: Autónomas      
Trabajo personal 94 3,76 1, 2, 5, 3, 4, 6, 13, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19

Evaluación

*

- Trabajos en grupo durante el curso. Parte de su evaluación puede incluir preguntas orales a los miembros del grupo.

- Examen presencial

- Examen compensatorio opcional presencial. Si el estudiante asiste al examen compensatorio, su calificación sustituirá la puntuación en el examen ordinario anterior, independientemente de las puntuaciones obtenidas en ambos exámenes.

* La evaluación propuesta puede experimentar alguna modificación en función de las restricciones a la presencialidad que impongan las autoridades sanitarias.

Actividades de evaluación

Título Peso Horas ECTS Resultados de aprendizaje
Ejercicios en grupo 20% 0 0 1, 2, 5, 3, 4, 6, 13, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19
Examen (o examen compensatorio) 50% 0 0 1, 2, 5, 3, 4, 6, 13, 7, 8, 9, 10, 11, 12, 16, 14, 15, 17, 18, 19
Trabajos en grupo 30% 0 0 1, 2, 5, 3, 4, 6, 13, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19

Bibliografía

Básica: todos los conceptos desarrollados en las sesiones de clase se publicarán en Moodle, incluidas las diapositivas que se tratarán en las sesiones de teoría.

Otras lecturas: los estudiantes interesados en ir más lejos pueden explorar los siguientes escritos:

- Agresti, Alan. Categorical Data Analysis. Wiley, 3rd Edition, 2013.

- Breslow, N., N. Day. Statistical methods in cancer research. International Agency for Research on Cancer, 1980.

- Clayton D., Hills, M. Statistical models in epidemiology. Oxford University Press, 1993.

- Dalgaard, P. Introductory Statistics with R. Springer, 3rd Edition, 2002.

- dos Santos, I. Cancer epidemiology: principles and methods. International Agency for Research on Cancer, 1999.

- Gordis, L. Epidemiology. W.B. Saunders, 2004.

- Lachin, J.M. Biostatistical Methods: The Assessment of Relative Risks. Wiley, 2000.

- Motulsky, H.J. Intuitive Biostatistics. Oxford University Press, 1995.

- Rothman, K., Greenland, S. Modern epidemiology. Lippincott Williams & Wilkins, 1998.

- Rothman, K. Epidemiology: an introduction. Oxford University Press, 2002.

- Wassertheil-Smoller, S. Biostatistics and epidemiology: a primer for health and biomedical prefessionals. Springer, 3rd Edition, 2004.

Software

  • R
  • LaTeX
  • RStudio