Titulación | Tipo | Curso | Semestre |
---|---|---|---|
2503852 Estadística Aplicada | OB | 2 | 1 |
Fundamentos de estadística descriptiva e inferencial y de probabilidades, así como conocer los rudimentos de programación con el lenguaje R.
El objetivo del curso es el estudio de la modelización y el análisis de datos mediante la teoría de los Modelos Lineales, así como las aplicaciones en diversos ámbitos (economía, salud, ingeniería, y ciencias en general). Los métodos y técnicas se introducen en base a ejemplos y se trabajan a partir de la resolución de los problemas propuestos y de prácticas de ordenador pensadas para ser ejecutadas con el lenguaje R. En primer lugar, se presenta el modelo de regresión simple porque tiene numerosas aplicaciones y porque es un buen prólogo para la comprensión del modelo múltiple. El modelo de regresión múltiple, expresado matricialmente e incluyendo algunas variantes (polinómica, con interacciones, utilizando variables regresoras ficticias, etc.), constituye la segunda parte del curso. En todos los procedimientos de modelización analizan el ajuste y la especificación correcta del modelo, la satisfacción de las hipótesis, la detección de datos "especiales" (anómalas e influyentes), y se estudian posibles soluciones cuando se detectan anomalías.
1. El modelo derRegresión lineal simple
- Introducción a los modelos de regresión y pasos previos en la regresión simple: Exploración de los datos.
- La regresión lineal simple: Modelo, hipótesis, parámetros.
- Estimación puntual de los parámetros del modelo: Método de mínimos cuadrados. Los estimadores de máxima verosimilitud.
- Inferencia sobre los parámetros del modelo bajo las hipótesis de Gauss-Markov: Intervalos y tests.
- Intervalo de confianza para la respuesta media e intervalo de predicción de nuevas observaciones. Inferencias simultáneas en la regresión simple. Bandas de confianza y de predicción.
- Análisis de la varianza (ANOVA) del modelo de regresión simple.
- Diagnósticos del modelo: Evaluación gráfica de la linealidad y verificación de las hipótesis mediante el análisis de los residuos. Test de falta de ajuste lineal.
- Datos anómalas o influyentes.
2. El modelo de regresión lineal múltiple
- Pasos previos en la regresión múltiple: Exploración de los datos con herramientas de visualización multidimensional.
- Expresiòn matricial del modelo y los estimadores de los coeficientes. Interpretación de los coeficientes del modelo múltiple.
- Leyes de los estimadores de los coeficientes, de las predicciones y de los residuos: Aplicación de las propiedades de las matrices idempotentes.
- Inferencia en el modelo lineal múltiple. Anova del modelo.
- Test de "ligaduras" para resolver restricciones lineales sobre los coeficientes: El principio de la variabilidad incremental.
- Discusión de las hipótesis del modelo lineal: Análisis de los residuos. Transformaciones de Box-Cox.
- El problema de la multi-colinealidad entre variables regresoras: Detección y soluciones.
- Variables ficticias en regresión (dummies): Interpretación de los coeficientes y aplicaciones.
- Selección de variables en un modelo lineal: El estadístico Cp de Mallows, la validación cruzada de modelos y la selección automática por pasos.
La asignatura consta de teoría, problemas y pràcticas. En la teoria se presentan y motivan las herramientas y métodos de modelos lineales y se hace un trabajo analítico. Se proporcionarán listas de problemas a lo largo del curso. Además, hay prácticas para analizar datos con el lenguaje de programación R. Se propondrán algunas tareas (ejercions teóricos y con R) para entregar. Además de las entregas, el estudiante también realizará otro trabajo autónomo consistente en investigación bibliográfica y preparación de exámenes.
El material del curso (notas de teoría, listas de problemas y tareas de ordenador) estará disponible en el aula moodle.
La perspectiva de género va más allá de los contenidos de los cursos, ya que implica también una revisión de las metodologías y las interacciones entre los estudiantes y los profesores, tanto dentro como fuera del aula. En este sentido, las metodologías participativas de enseñanza que dan lugar a un entorno de igualdad, menos jerárquicas en el aula, evitando ejemplos estereotipados en el género y el vocabulario sexista, suelen ser más favorables a la plena integración y participación de las alumnas. Por ello, se hará esta aplicación efectiva durante el curso.
Título | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|
Tipo: Dirigidas | |||
Clases de teoría | 26 | 1,04 | 1, 2, 3, 4, 6, 11, 10, 12, 13, 14, 21, 25 |
Prácticas tutorizadas | 26 | 1,04 | 5, 14, 15, 21, 23, 22 |
Tipo: Autónomas | |||
Estudio y consultas | 36 | 1,44 | 6, 11, 23 |
Resolución de ejercicios con R | 32 | 1,28 | 1, 2, 3, 4, 5, 7, 8, 9, 12, 16, 17, 19, 20, 21, 24, 22, 25 |
Resolución de problemas | 18 | 0,72 | 4, 10, 12, 13, 14, 18, 19, 21, 25 |
PR: Entrega de los ejercicios teóricos y prácticos (con R). Valoración máxima de PR: 2 puntos. Esta parte no es recuperable.
P1: Prueba parcial de regresión simple (teoría, ejercicios, y prácticas). Valoración máxima de P1: 3 puntos.
P2: Prueba parcial de regresión múltiple (teoría, ejercicios y prácticas). Valoración máxima de P2: 5 puntos.
La nota de curso se calculará: NC = PR + P1 + P2. El aprobado por curso requiere que NC sea igual o mayor que 5 y que las notas de cada parcial sean mayores o iguales que 3.5 (sobre 10).
Al final del semestre se realizará un examen de recuperación que será una prueba de síntesis, PS, (teoría, ejercicios y prácticas) de los contenidos de todo el curso con una puntuación máxima de 8 puntos, por los alumnos que no hayan aprobado por curso o quieran mejorar la nota. Sólo se podrán presentar a la prueba de síntesis los estudiantes que hayan participado en 2/3 de las actividades de evaluación.
La nota final de los presentados a la prueba de síntesis se calculará: NF = PR + max (PS, P1 + P2).
Las matrículas de honor que eventualmente se concedan a partir de la NC no se retirarán incluso si otro estudiante obtiene una nota superior después de la PS.
Atención: "Sin perjuicio de otras medidas disciplinarias que se estimen oportunas, y de acuerdo con la normativa académica vigente, se calificarán con un cero las irregularidades cometidas por el estudiante que puedan conducir a una variación de la calificación de un acto de evaluación. Por lo tanto, plagiar, copiar o dejar copiar una práctica ocualquier otra actividad de evaluación implicará suspender con un cero y no sepodrá recuperar en el mismo curso académico. Si esta actividad tiene una nota mínima asociada, entonces la asignatura quedará suspendida. "
Título | Peso | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|---|
Entrega de tareas (problemas y pràcticas resueltas) | 20% | 0 | 0 | 2, 3, 4, 5, 6, 11, 7, 8, 9, 15, 17, 18, 19, 20, 21, 23, 24, 22, 25 |
Examen final | 80% (recupera los dos parciales) | 4 | 0,16 | 4, 5, 10, 12, 13, 14, 15, 21, 22, 25 |
Primer parcial | 30% | 4 | 0,16 | 2, 4, 5, 10, 9, 14, 17, 22, 25 |
Segundo parcial | 50% | 4 | 0,16 | 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 15, 16, 17, 21, 22, 25 |
Montgomery, D. Peck, A. Vining, G.; Introduction to Linear Regression Analysis. Wiley, 2001.
Clarke, B.R.; Linear Models:The Theory and Applications of Analysis of variance. Wiley, 2008.
Christopher Hay-Jahans; An R Companion to Linear Statistical Models. Chapman and Hall, 2012.
Fox, J. and Weisberg, S.; An R Companion to Applied Regression. Sage Publications, 2nd edition, 2011.
Peña, D.; Regresión y diseño de Experimentos. Alianza Editorial (Manuales de Ciencias Sociales), 2002.
Bibliografía complementaria:
Sen, A., Srivastava, M.;Regression Analysis: Theory, Methods and Applications. Springer, 1990.
Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman; .Applied Linear Models. Irwin (4th edition), 1996.
Faraway, J.; Linear Models with R. Chapman&Hall/CRC (2nd ed), 2014.
Rao, C. R., Toutenburg, H., Shalabh, Heumann, C; Linear Models and generalizations. Springer, 2008.