Logo UAB
2020/2021

Inferència Estadística 1

Codi: 104855 Crèdits: 6
Titulació Tipus Curs Semestre
2503852 Estadística Aplicada FB 1 2
La metodologia docent i l'avaluació proposades a la guia poden experimentar alguna modificació en funció de les restriccions a la presencialitat que imposin les autoritats sanitàries.

Professor/a de contacte

Nom:
Anna López Ratera
Correu electrònic:
Anna.Lopez.Ratera@uab.cat

Utilització d'idiomes a l'assignatura

Llengua vehicular majoritària:
català (cat)
Grup íntegre en anglès:
No
Grup íntegre en català:
Grup íntegre en espanyol:
No

Prerequisits

Es considera molt important un bon coneixement dels continguts de les assignatures cursades durant el primer semestre, especialment les de Introducció a la Probabilitat, Càlcul 1 i Anàlisi Exploratori de dades.

Objectius

Aquesta assignatura és la primera del Grau dedicada a la Inferència Estadística, que és la part de l'Estadística que permet obtenir, de manera controlada, informació sobre una població a partir de les dades d'una mostra "representativa". L'assignatura té un caràcter central dins dels estudis, ja que s'hi presenten conceptes i tècniques que seran emprades en moltes de les matèries que es cursaran a partir d'ara. Concretament, es començarà fent una introducció a la Estadística, i després es tractarà l'estimació de paràmetres, tant puntual com per intervals de confiança, així com els tests d'hipòtesis paramètrics clàssics per a una i dues poblacions normals i dicotòmiques, acabant amb les proves khi-quadrat.

Competències

  • Analitzar dades mitjançant l’aplicació de mètodes i tècniques estadístiques, treballant amb dades de diverses tipologies.
  • Avaluar de manera crítica i amb criteris de qualitat el treball realitzat.
  • Que els estudiants puguin transmetre informació, idees, problemes i solucions a un públic tant especialitzat com no especialitzat.
  • Que els estudiants sàpiguen aplicar els coneixements propis a la seva feina o vocació d'una manera professional i tinguin les competències que se solen demostrar per mitjà de l'elaboració i la defensa d'arguments i la resolució de problemes dins de la seva àrea d'estudi.
  • Resumir i descobrir patrons de comportament en l’exploració de les dades.
  • Seleccionar els models o tècniques estadístiques per aplicar-los en estudis i problemes reals, així com conèixer-ne les eines de validació.
  • Seleccionar les fonts i tècniques d’adquisició i gestió de dades adequades per a fer-ne un tractament estadístic.
  • Utilitzar correctament un ampli espectre del programari i llenguatges de programació estadístiques, escollint el més apropiat per a cada anàlisi i ser capaç d’adaptar-lo a noves necessitats.
  • Utilitzar eficaçment la bibliografia i els recursos electrònics per obtenir informació.

Resultats d'aprenentatge

  1. Analitzar dades mitjançant diferents tècniques d'inferència utilitzant programari estadístic.
  2. Analitzar dades mitjançant diverses tècniques d'inferència per a una o diverses mostres.
  3. Avaluar de manera crítica i amb criteris de qualitat la feina feta.
  4. Comprendre els conceptes vinculats als tests d'hipòtesi en els àmbits clàssic i bayesià.
  5. Depurar i emmagatzemar la informació en suport informàtic.
  6. Descriure les propietats bàsiques dels estimadors puntuals i d'interval en l'àmbit clàssic i el bayesià.
  7. Determinar la mida de la mostra i establir una estratègia de mostreig per a estudis d'estimació de paràmetres, comparació de mitjanes, de proporcions, etc.
  8. Identificar distribucions estadístiques.
  9. Identificar la inferència estadística com a instrument de pronòstic i predicció.
  10. Interpretar els resultats obtinguts i formular conclusions respecte a la hipòtesi experimental.
  11. Que els estudiants puguin transmetre informació, idees, problemes i solucions a un públic tant especialitzat com no especialitzat.
  12. Que els estudiants sàpiguen aplicar els coneixements propis a la seva feina o vocació d'una manera professional i tinguin les competències que se solen demostrar per mitjà de l'elaboració i la defensa d'arguments i la resolució de problemes dins de la seva àrea d'estudi.
  13. Utilitzar eficaçment bibliografia i recursos electrònics per obtenir informació.
  14. Utilitzar les propietats de les funcions de distribució i densitat.
  15. Utilitzar programari estadístic per obtenir índexs de resum de les variables de l'estudi.
  16. Validar i gestionar la informació per a fer-ne un tractament estadístic.

Continguts

Preliminars de Probabilitat (recordatori): Probabilitat i variables aleatòries. Concepte de llei. Distribucions

discretes. Funció de densitat i de probabilitat. Esperança i variància. Funció generatriu de moments. Exemples.

Tema 1. Introducció a la Estadística.

1. Estadística descriptiva i estadística inferencial.

1.1. Conceptes bàsics en inferència: població estadística i mostra; paràmetres, estadístics i estimadors.

1.2. Models estadístics: paramètrics i no paramètrics.

2. Estadístics més usuals: els moments mostrals. Els estadístics d'ordre.

3. Distribució d'alguns estadístics.

3.1. D'una mostra d'una población Normal: Teorema de Fisher.

3.2. El Teorema Central del Límit: normalitat asimptòtica dels moments mostrals i de la proporció.

Tema 2. Estimació per intervals de confiança.

1. Concepte d' interval de confiança.

2. El mètode del "pivot" per a la construcció d'intervals de confiança.

3. Intervals de confiança per als paràmetres d'una població.

3.1. Per a la mitjana d'una població Normal amb desviació coneguda.

3.2. Per a la mitjana d'una població Normal amb desviació desconeguda.

3.3. Per a la variància d'una població Normal amb mitjana desconeguda.

3.4. Per a la variància d'una població Normal amb mitjana coneguda.

3.5. Intervals de confiança assimptòtics.

4. Intervals de confiança usant la desigualtat de Txevixev.

5. Intervals de confiança per als paràmetres de dues poblacions.

5.1. Intervals de confiança amb mostres independents.

5.2. Intervals de confiança per a la diferència de mitjanes de dues poblacions Normals amb dades

aparellades.

Tema 3: Estimació puntual.

1. Estimadors puntuals: definició i "bones" propietats.

1.1. Biaix.

1.2. Comparació d'estimadors sense biaix. Eficiència relativa.

1.3. La Cota de Cramér-Rao.

1.4. Comparació d'estimadors amb biaix: l'Error Quadràtic Mitjà.

1.5. Consistència d'un estimador.

Tema 4: Tests d'hipòtesis.

1. Introducció.

2. Tests per als paràmetres d'una població.

2.1. Per a la mitjana d'una població Normal amb desviació coneguda.

2.2. Per a la mitjana d'una població Normal amb desviació desconeguda.

2.3. Tests assimptòtics per a la mitjana d'una població quan la mostra és gran i per a la proporció.

2.4. Tests per a la variància d'una població Normal.

3. Tests per als paràmetres de dues poblacions.

3.1. Tests d'hipòtesis amb mostres independents.

3.2. Tests d'hipòtesis amb dades aparellades.

4. Les proves khi-quadrat.

4.1. Prova khi-quadrat de bondat d'ajustament.

4.2 Prova khi-quadrat d'independència.

Tema 5: Regressió lineal simple.

1. Objectius i hipòtesis del model.

2. Estimació pel mètode dels mínims quadrats ordinaris (MQO).

2.1 Els estimadors de MQO.

2.2 Estimació de la variància dels errors.

2.3 Propietats dels estimadors de MQO.

3. Inferència basada en el model de regressió lineal simple.

3.1 Intervals de confiança pels paràmetres del model. 

3.2 Contrastos d'hipòtesi pels paràmetres del model.

4. Bondat de l'ajust.

5. Predicció amb el model de regressió lineal simple

 

IMPORTANT: En la docència, la perspectiva de gènere implica revisar els biaixos androcèntrics i qüestionar els supòsits i estereotips de gènere ocults. Aquesta revisió comporta incloure als continguts de l'assignatura el coneixement produït per les dones científiques, sovint oblidades, procurant el reconeixement de les seves aportacions, així com el de les seves obres a les referències bibliogràfiques. També es procurarà introduir a la part més pràctica de l'assignatura, l'anàlisi i comparació de dades estadístiques per sexe, comentant a l'aula les causes i els mecanismes socials i culturals que poden sustentar les desigualtats observades.

Metodologia

L'assignatura s'estructura a partir de classes de teoria, problemes i pràctiques.

A les classes de teoria anirem introduint els conceptes i tècniques que descriu el programa del curs. Donat el seu contingut estàndard d'un primer curs d'inferència estadística, es pot seguir fent us de la bibliografia bàsica recomanada. També s'anira penjant al Campus Virtual el material corresponent a cada tema explicat a les classes presencials.

Les classes de problemes tenen per objectiu treballar i entendre els conceptes estadístics. Al Campus Virtual es penjaran les llistes de problemes i, quan ja s'hagin resolt a classe, també les solucions.

L'objectiu de les practiques és la utilització de programari estadístic R, per a obtenir i aclarar els resultats dels procediments que s'han introduït a les classes de teoria i problemes. Al Campus Virtual es penjarà l'enunciat de cada pràctica amb antelació.

IMPORTANT: Per a treballar més còmodament amb R, es recomana fer servir l'interface RStudio: és lliure, "open source" i funciona amb Windows, Mac i Linux. https://www.rstudio.com/

OBSERVACIÓ: La perspectiva de gènere en la docència va més enllà dels continguts de les assignatures, ja que també implica una revisió de les metodologies docents i de les interaccions entre l'alumnat i el professorat, tant a l'aula com a fora. En aquest sentit, les metodologies docents participatives, on es genera un entorn igualitari, menys jeràrquic a l'aula, evitant exemples estereotipats en gènere i vocabulari sexista, amb l'objectiu de desenvolupar el raonament crítici el respecte a la diversitat i pluralitat d'idees, persones i situacions, solen ser més favorables a la integració i plena participació de les alumnes a l'aula, i per això es procurarà la seva implementació efectiva en aquesta assignatura.

Activitats formatives

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classe de problemes 18 0,72 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Classes de pràctiques 12 0,48 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15
Classes de teoria 30 1,2 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14
Tipus: Autònomes      
Exàmens 15 0,6 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14
Resolució de problemes 25 1 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Resolució de pràctiques 20 0,8 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15

Avaluació

La nota d'avaluació continuada s'obtindrà a partir d'un control dels problemes que donarà una nota C, i a partir d'un control de les pràctiques de l'assignatura que donarà una nota P. La nota C té un pes del 20% i la nota P un pes del 30%. La nota de l'examen final E1 val un 50% de la nota final. Amb les notes C, P i E1 s'obté la nota de l'assignatura, N, de la manera següent:

N = 0.50 × E1 + 0.20 × C + 0.30 × P

Recuperació i/o millora de la nota d'examen:

L'alumne supera l'assignatura si N és més gran o igual que 5 . En cas contrari, o bé si l'alumne vol millorar nota, hi ha una possibilitat de millorar la part de la nota de l'examen E1 mitjançant un examen de recuperació, la nota del qual serà E2. Així, a partir d'aquesta nota de recuperació s'obté la nota final de l'assignatura:

NF = 0.50 × max(E1, E2) + 0.20 × C + 0.30 × P

Observació 1: Les notes C i P d'avaluació continuada no son recuperables.

Observació 2: Es considera que l'alumne s'ha presentat a la convocatòria de l'assignatura si es presenta a qualsevol dels dos exàmens que donen lloc a les notes E1 o E2. En cas contrari, serà un No Presentat, encara que tingui alguna nota d'avaluació continuada (C i/o P) .

Activitats d'avaluació

Títol Pes Hores ECTS Resultats d'aprenentatge
Entrega de problemes (C) 0,20 8 0,32 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16
Examen de pràctiques (P) 0,30 12 0,48 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Examen final / Recuperació (E) 0,50 10 0,4 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14

Bibliografia

Berger, R.L., Casella, G.: Statistical Inference. Duxury Advanced Series. 2002.

Daalgard, P.: Introductory Statistics with R. Springer. 2008.

Daniel, W.W.: Biostatistics. Wiley. 1974.

DeGroot, M. H.: Schervish, M.J. Probability and Statistics. Pearson Academic. 2010.

Peña, D.: Estadística. Fundamentos de estadística. Alianza Universidad. 2001.

R Tutorial. An introduction to Statistics. https://cran.r-project.org/manuals.html. juny 2019.

Silvey, S.D.: Statistical Inference. Chapman&Hall. 1975.