Degree | Type | Year |
---|---|---|
Computational Mathematics and Data Analytics | OP | 4 |
You can view this information at the end of this document.
There are none.
The specific goal of the course is to introduce the set of techniques and skills needed to design, plan and develop projects at a professional level in the fields of companies and organizations, particularly those related to Artificial Intelligence.
At the end of the course, students will be able to:
Furthermore, students must be able to work as a team in planning specific projects, and to comunicate within the team and with the organization, both in the form of oral presentations and written reports, in the different stages of the project planning.
Unit 0. The field of AI and project management
Unit 1. Basics elements of project management: Major characteristics, project development cycle, approaches to project management
Unit 2. The initial phase of a project.
Unit 3. Project planning and scheduling: the analytical structure of a project and the development of a WBS. PERT and CPM networks: characteristics and use. Critical path, total duration, and slacks for non-critical tasks. Treatment of time uncertainty. Task planning and scheduling charts: Gantt chart. Specific software for time planning and management of projects.
Unit 4. Cost Planning and sustainability: cost estimations for a project. Monetary and intanglible costs.
Unit 5. Quality management and risk management: identification of the relevant quality criteria for a project, and preparation of the project's quality plan. Identification and measurement of possible sources of risk, as well as subsequent planning of sensible responses.
Unit 6. Controlling a project: methodologies to monitor forecasts made in project planning (scope, time, resources, costs, quality): from milestones to the use of standard ad-hoc computer software.
Throughout the development of the subject, various agile project development techniques will be considered (including Scrum, Kanban or Lean) as well as various tools for ideation (canvas, design thinking, prototyping) and IT tools for the assurance of collaborative work and in the management and control of projects
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
A. Theoretical lectures | 18 | 0.72 | |
B. Classroom problems | 12 | 0.48 | |
C. Laboratory sessions | 12 | 0.48 | |
D.Oral presentations and discussion of cases | 8 | 0.32 | |
Type: Supervised | |||
E. Tutorials | 12 | 0.48 | |
Type: Autonomous | |||
F. Independent study | 20 | 0.8 | |
G. Designing, preparing and drafting the course projects | 65 | 2.6 |
Based on PBL, the course combines several techniques to favour formative learning:
This approach merges individual learning, essential in any subject of study, with collaborative activities to ensure the quality of the team projects, thus consolidating the learning skills of each one of the team members.
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
Final exam | 40% | 3 | 0.12 | CM36, KM32, SM39 |
Final technical report of the project worked on during the course | 35% | 0 | 0 | CM36, KM32, SM39 |
Presentación individual de ejercicios y casos prácticos | 15% | 0 | 0 | CM36, SM39 |
Presentation of reports related to the developed project | 10% | 0 | 0 | CM36, SM39 |
La evaluación de la asignatura se realizará de forma progresiva y continuada durante el semestre. El sistema de evaluación se basa en las siguientes evidencias de aprendizaje:
La calificación final de la asignatura se obtendrá de la suma ponderada de las valoraciones de las diversas evidencias, teniendo en cuenta que cada una de les tres componentes citadas tiene un peso específico distinto:
N = 15% (actividades individuales durante el curso) + 10% (presentaciones informes parciales del proyecto) + 35% (memoria final del proyecto) + 40% (examen final)
Será condición necesaria para efectuar este cálculo (1) que cada una de las componentes tenga una puntuación positiva, (2) que la calificación individual de la memoria final de proyecto sea igual o superior a 4.5 puntos, y (3) que la calificación obtenida en el examen final sea igual o superior a 4.0.
Las calificaciones obtenidas de los trabajos realizados durante el curso siempre serán a nivel individual, y no necesariamente coincidirán con la calificación del trabajo en sí, ya que se tendrán en cuenta aspectos individuales comola participación en la resolución y la defensa de los mismos.
Notas importantes sobre la evaluación:
1. Los alumnos que no hayan superado la materia mediante el cómputo anterior, o que no reúnan todas las condiciones para poder hacerlo, tendrán como nota final el valor inferior entre 4.5 y el valor de N anterior. Una nota igual o superior a 3.5 da derecho al alumno a participar en la recuperación que se describe a continuación.
2. Solamente se considerá "No evaluable" un/a estudiante no haya participado en ninguna de las actividades de evaluación de la asignatura.
3. Esta asignatura NO ofrece el sistema de evaluación única.
Use of AI
In this course, the use of Artificial Intelligence (AI) technologies is permitted as an integral part of the development of the assignment, provided that the final result reflects a significant contribution from the student in terms of analysis and personal reflection. The student must clearly identify which parts were generated using such technology, specify the tools used, and include a critical reflection on how these tools influenced the process and the final outcome of the activity. A lack of transparency in the use of AI will be considered academic dishonesty and may result in a grade penalty for the activity or more severe sanctions in serious cases.
Proceso de recuperación
Consistirá en la realitzación de una prueba el dia previsto por el Centro. En cas de superarla, la calificació final de la assignatura sera de 5.0.
Free and open source software to be defined based on the interest of the students' teams
Please note that this information is provisional until 30 November 2025. You can check it through this link. To consult the language you will need to enter the CODE of the subject.
Name | Group | Language | Semester | Turn |
---|---|---|---|---|
(PAUL) Classroom practices | 711 | English | first semester | afternoon |
(PLAB) Practical laboratories | 711 | English | first semester | afternoon |
(PLAB) Practical laboratories | 712 | English | first semester | afternoon |
(TE) Theory | 71 | English | first semester | afternoon |