Esta versión de la guía docente es provisional hasta que no finalize el periodo de edición de las guías del nuevo curso.

Logo UAB

Bioinformática

Código: 100894 Créditos ECTS: 3
2025/2026
Titulación Tipo Curso
Bioquímica OB 3

Contacto

Nombre:
Maria Margarita Julià Sapé
Correo electrónico:
margarita.julia@uab.cat

Idiomas de los grupos

Puede consultar esta información al final del documento.


Prerrequisitos

No existen prerequisitos para esta asignatura. No obstante, se recomienda repasar los conceptos adquiridos en las asignaturas de "Biologia Molecular" y "Química i Enginyeria de Proteïnes" impartidas durante el segundo curso del grado.

También es recomendable que los alumnos posean un conocimiento suficiente de la lengua inglesa que les permita consultar sin dificultad las fuentes bibliográficas y recursos educativos "on-line" que la profesora propondrá a lo largo de las sesiones.


Objetivos y contextualización

La materia impartida durante este curso proporciona al alumno una visión introductoria a la bioinformática. Esta asignatura está dirigida a estudiantes de Bioquímica de 3er curso (6º semestre).

Al superar dicha asignatura, los alumnos deben ser capaces de:

-Dominar las herramientas bioinformáticas basadas en web o interfaz gráfica de usuario, para el estudio de secuencias. 

-Obtener, alinear, visualizar y comparar secuencias.

-Inferir relaciones filogenéticas entre secuencias.

-Conocer las diferentes herramientas predictivas para secuencias y saber escoger la más adecuada para cada pregunta experimental.

-Ser capaz de responder a preguntas de interés bioquímico mediante herramientas bioinformáticas.


Resultados de aprendizaje

  1. CM19 (Competencia) Valorar la aportación de la biología de sistemas a soluciones innovadoras a las necesidades de la sociedad.
  2. KM24 (Conocimiento) Ilustrar una representación cuantitativa de un proceso o sistema biológico.
  3. KM25 (Conocimiento) Describir los principales métodos de análisis y predicción usados en la biología de sistemas.
  4. SM21 (Habilidad) Utilizar los recursos informáticos en la búsqueda de información en bases de datos, en el análisis de datos genómicos, transcriptómicos y proteómicos, así como en la creación de modelos de los sistemas biológicos.
  5. SM24 (Habilidad) Interpretar información experimental en el ámbito de la biología de sistemas.

Contenido

  • Campo de estudio de la bioinformática. Bases de datos biomédicas, repositorios públicos y centralizados de datos, formatos, vocabularios controlados y estandarización de la información para su transmisión, intercambio y reanálisis.
  • Alineamiento de dos secuencias. Matrices de puntuación PAM y BLOSUM. Estrategias algorítmicas de alineamiento.
  • “Basic Local Alignment Search Tool” (BLAST). Algoritmo de BLAST. Parámetros y tipos básicos de BLAST. Evaluación de los resultados obtenidos.
  • PSI-BLAST y otros tipos avanzados de BLAST. La “position-specific scoring matrix” o PSSM.
  • Alineamiento de múltiples secuencias. Estrategias algorítmicas utilizadas por distintos programas: alineamientos exactos, progressivos, iterativos, basados en consistencia o en estructura.
  • Bases de datos de alineamientos múltiples, Pfam y “Conserved domain database”.
  • Filogenias. Tipos de árboles filogenéticos y els sus componentes. Estadios de un análisis filogenético y métodos para construir y evaluar la fiablidad de un árbol filogenético.
  • Dominios. El carácter modular de las proteinas con respecto a las herramientas de búsqueda y/o predictivas. Herramientas bioinformáticas de predicción de las propietades físicas, localización y función de las proteínas.
  • Principios de la predicción estructural de proteínas, algoritmo de Chou y Fasman. Enfoques basados en homología, reconocimiento de plegamiento o “ab initio”. Herramientas de visualización estructural. Bases de datos de proteínas (Uniprot, PDB), familias, categorización jerárquica.
  • Técnicas de "machine learning", redes neuronales aplicadas al campo de estudio de la bioinformática. 

Actividades formativas y Metodología

Título Horas ECTS Resultados de aprendizaje
Tipo: Dirigidas      
Clases teóricas 10 0,4 CM19, KM25, SM24, CM19
Prácticas en aula de informática o problemas 16 0,64 SM21, SM24, SM21
Tipo: Supervisadas      
Tutorías 6 0,24 CM19, KM24, KM25, SM21, SM24, CM19
Tipo: Autónomas      
Actividades propuestas vía MOODLE 25 1 CM19, KM24, KM25, SM21, SM24, CM19
Estudio 10 0,4 CM19, KM24, KM25, SM21, SM24, CM19

Clases teóricas. Las clases teóricas cubrirán los fundamentos teóricos de la asignatura, y serán evaluadas en el exámen.

Aprendizaje autónomo- Actividades propuestas vía MOODLE. A lo largo de las 8 semanas de la asignatura, la profesora irá proponiendo distintas actividades autónomas, el resultado de las cuales se entregará a través de la plataforma MOODLE. Se propondrá una variedad de actividades/problemas que podrán consistir en la visualización y realización de tutoriales, ejecución de procedimientos, realización de cuestionarios, dependiendo de la temática abordada y en estrecha relación con la misma, y que, de forma genérica seran complementarios al resto de actividades y temario. Podrá ser necesario que previamente a una sesión de problemas deba realizarse alguna actividad en MOODLE con el objeto de que los alumnos aprovechen mejor la sesión de problemas.

Aprendizaje autónomo: Estudio.

Clases de problemas. Las clases de problemas incidirán en los aspectos prácticos de la asignatura, y se espera que l@s alumn@s adquieran la destreza necesaria en la búsqueda e interpretación de información, así como en la ejecución de procedimientos relevantes en los aspectos cubiertos en cada clase. Los ejercicios se desarrollaran de forma interactiva y la corrección y discusión de los mismos se realizará en la misma sesión. Los aspectos tratados en las clases de problemas se evaluarán en el exámen.

Tutories. Sesiones individuales o en grupos pequeños para la resolución de dudas relacionadas con la asignatura. A demanda de l@s alumn@s y a pactar día/hora con la profesora. 

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.


Evaluación

Actividades de evaluación continuada

Título Peso Horas ECTS Resultados de aprendizaje
Entrega de actividades propuestas a través de MOODLE 20% 4 0,16 CM19, KM24, KM25, SM21, SM24
Examen, conceptos prácticos 40% 2 0,08 KM24, SM21, SM24
Exámen, conceptos teóricos 40% 2 0,08 CM19, KM24, KM25

Habrá tres tipos de evaluación:

1) Exámenes. Habrá dos exámenes que evaluarán los conceptos teóricos como de tipo aplicado, respectivamente, que se traten en las sesiones. Podrán consistir en preguntas cortas y/o preguntas tipo test y/o de análisis de resultados o datos proporcionados por la profesora. Cada examen ponderará un 40% de la nota final, y se realizará de forma individual, preferiblemente en un aula de informática de la facultad. Para superar el exámen, el alumno deberá alcanzar una nota igual o superior a 5/10 en cada uno de ellos por separado y cada uno de ellos se podrá recuperar al final del semestre en el exámen de recuperación. Ambos exámenes podran compensarse mutuamente siempre que la nota esté comprendida en el rango [4,5-4,9], y el promedio entre los dos exámenes sea igual o mayor que 5. 

2) Entrega de actividades propuestas a través de MOODLE. La suma total de la puntuación de estas actividades ponderará un un 20% de la nota final y no será recuperable. Tampoco podrá puntuarse en este apartado si se entregan las actividades fuera de plazo.

Para superar la asignatura, es necesario que se cumplan los dos criterios siguientes:

a)      aprobar el exámen con una nota final igual o superior a 5 y

b)      obtener una calificación final igual o superior a 5, después de calcular la media ponderada de las cuatro actividades deevaluación (exámen, activitades MOODLE, trabajo en grupo evaluado por la profesora y por los compañeros).  

Exámen de recuperación y mejora de nota

El exámen de recuperación tendrá por regla general el mismo formato que la prueba escrita final, es decir, podrá consistir en preguntas cortas y/o preguntas tipo test y/o de análisis de resultados o datos proporcionados por la profesora.

Los alumnos que deseen mejorar la nota, podrán presentarse a un exámen de mejora de nota al final del semestrem en la fecha y hora programada para el exámen de recuperación. El grado de dificultad de la prueba de mejora podrá ser superior a la de las demás pruebas escritas. Quien se presente a mejorar nota renuncia a la nota obtenida en el exámen anterior. Quien desee presentarse al exámen de mejora de nota deberá avisar a la profesora con 48 de anticipación, con el objeto de que se pueda planificar la logística (reserva aulas, etc). La revisión del exámen se realizará en día y lugar concertados, entre 1 y 7 días hábiles después de la publicación de las notas. Quien no pueda asistir al exámen por causa justificada y aporte la documentación oficial correspondiente al Coordinador de Grado, tendrá derecho a realizar el exámen en otra fecha que podría combinar la resolución de problemas con la respuesta oral a preguntas planteadas por la profesora. La Coordinación de Grado velará por la concreción de la misma con la profesora. Cualquier aspecto no contemplado por esta guía se regirá por la normativa de evaluación de la Facultad de Biociencias. Para participar en la recuperación, la persona deberá haber sido previamente evaluada por un conjunto de actividades el peso de las cuales equivalga a un mínimo de dos tercios de la calificación total de la asignatura. Por tanto, la persona obtendrá la calificación de “No Evaluable” cuando las actividades de evaluación relaizadas tengan una ponderación inferior al 67% en la calificación final.

Esta asignatura no contempla la evaluación única. 


Bibliografía

  • Pevsner, Jonathan. 2015. Bioinformatics and functional genomics, 3rd edition. Wiley-Blackwel. ISBN: 978-1-118-58178-0.
  • Lesk, Arthur. 2014. Introduction to Bioinformatics 4th edition. Oxford University Press. ISBN: 9780199651566.
  • Pazos, Florencio; Chagoyen, Mónica. 2015. Practical protein bioinformatics. Springer international publishing. ISBN: 978-3-319-12726-2
  • Recursos web indicados por la profesora a través de MOODLE


Grupos e idiomas de la asignatura

La información proporcionada es provisional hasta el 30 de noviembre de 2025. A partir de esta fecha, podrá consultar el idioma de cada grupo a través de este enlace. Para acceder a la información, será necesario introducir el CÓDIGO de la asignatura

Nombre Grupo Idioma Semestre Turno
(PLAB) Prácticas de laboratorio 331 Catalán segundo cuatrimestre manaña-mixto
(PLAB) Prácticas de laboratorio 332 Catalán segundo cuatrimestre manaña-mixto
(PLAB) Prácticas de laboratorio 333 Catalán segundo cuatrimestre manaña-mixto
(TE) Teoría 33 Catalán segundo cuatrimestre manaña-mixto