Logo UAB

Genòmica

Codi: 42399 Crèdits: 12
2024/2025
Titulació Tipus Curs
4313473 Bioinformàtica / Bioinformatics OT 0

Professor/a de contacte

Nom:
Antoni Barbadilla Prados
Correu electrònic:
antonio.barbadilla@uab.cat

Equip docent

Olga Dolgova
Marta Coronado Zamora
Jaime Luis Martinez Urtaza
Oscar Lao Grueso
Juan Ramon Gonzalez Ruiz
Sonia Casillas Viladerrams
Raquel Egea Sanchez
(Extern) Sergi Hervás
(Extern) Simon Heath

Idiomes dels grups

Podeu consultar aquesta informació al final del document.


Prerequisits

Per dur a terme aquest mòdul és necessari haver superat anteriorment els dos mòduls obligatoris: Programació en Bioinformàtica i Core Bioinformàtica. Nocions bàsiques en genètica també són necessàries.

Es recomana tenir un nivell B2 d’anglès o equivalent.

Objectius

La capacitat tecnològica per generar macrodades genòmiques i multiòmiques creix a un ritme incessant sense un seguiment paral·lel d'experts en bioinformàtica per fer front als reptes integració d'aquestes macrodades moleculars.

El propòsit d'aquest mòdul és proporcionar el coneixement i les habilitats tècniques que es requereixen per enfrontar amb èxit els desafiaments actuals de les anàlisis genòmiques i multimòmiques.


Competències

  • Analitzar i interpretar bioinformàticament les dades que es deriven de les tecnologies òmiques.
  • Comprendre les bases moleculars i les tècniques experimentals estàndard més comunes en les recerques òmiques (genòmica, transcriptòmica, proteòmica, metabolòmica, interactòmica, etc.).
  • Comunicar en llengua anglesa de manera clara i efectiva els resultats de les pròpies investigacions.
  • Dissenyar i aplicar la metodologia científica en la resolució de problemes.
  • Identificar les necessitats bioinformàtiques dels centres de recerca i les empreses del sector de la biotecnologia i la biomedicina.
  • Proposar solucions bioinformàtiques a problemes derivats de les recerques òmiques.
  • Proposar solucions innovadores i emprenedores en el seu camp d'estudi.
  • Tenir coneixements que aportin la base o l'oportunitat de ser originals en el desenvolupament o l'aplicació d'idees, sovint en un context de recerca.
  • Utilitzar i gestionar informació bibliogràfica i recursos informàtics en l'àmbit d'estudi.
  • Utilitzar sistemes operatius, programes i eines d'ús comú en bioinformàtica, i fer servir plataformes de còmput d'altes prestacions, llenguatges de programació i anàlisis bioinformàtiques.

Resultats d'aprenentatge

  1. Comunicar en llengua anglesa de manera clara i efectiva els resultats de les pròpies investigacions.
  2. Descriure el funcionament, les característiques i les limitacions de les tècniques de seqüenciació de primera, segona i tercera generació.
  3. Descriure i aplicar les eines d'acoblament, anotació, emmagatzemament, visualització i anàlisi de la variació de genomes.
  4. Dissenyar i aplicar la metodologia científica en la resolució de problemes.
  5. Dissenyar i interpretar estudis d'associació entre polimorfismes genètics i caràcters fenotípics per a la identificació de variants genètiques que afecten el fenotip, incloent-hi les associades a patologies i les que confereixen susceptibilitat a malalties humanes o altres espècies d'interès.
  6. Enumerar i descriure els continguts de les bases de dades d'informació rellevant per als diferents àmbits de la genòmicai fer cerques avançades.
  7. Establir les relacions corresponents entre seqüència de nucleòtids, estructura i funció gènica, utilitzant les fonts de dades biològiques i els fonaments de l'anàlisi bioinformàtica.
  8. Identificar i caracteritzar fonts i formats de visualització de genomes, juntament amb les anotacions i la informació de variació genètica, associació a malalties i expressió gènica.
  9. Integrar les dades genòmiques per a la reconstrucció in silicode les cèl·lules i els organismes (biologia de sistemes, biologia sintètica).
  10. Proposar solucions innovadores i emprenedores en el seu camp d'estudi.
  11. Reconèixer la importància estratègica dels avenços genètics en l'àmbit de la salut humana, especialment les aplicacions de la genòmica a la medicina personalitzada i la farmacogenòmica.
  12. Tenir coneixements que aportin la base o l'oportunitat de ser originals en el desenvolupament o l'aplicació d'idees, sovint en un context de recerca.
  13. Utilitzar els últims algoritmes d'alineació de seqüències i generació d'arbres evolutius, així com mètodes de seqüenciació i predicció de gens.
  14. Utilitzar i gestionar informació bibliogràfica i recursos informàtics en l'àmbit d'estudi.

Continguts

Lliçó 1. Introducció: Genomes i dades òmiques 

Lliçó 2. Seqüenciació de nova generació (NGS)

Lliçó 3. Donant sentit les dades del genoma

3.1 Ensamblatge del genoma
3.2 Anotació del genoma
3.3 Anàlisi funcional

Lliçó 4. Visualització del genoma

Lliçó 5. Variació del genoma
6.1 Teoria
6.2 Data
 
Lliçó 6. Estudis d'associació i GWA

Lliçó 7. Transcriptòmica
7.1 Microarrays
7.2 RNAseq
 
Lliçó 8. Anàlisi de cèl·lules indivduals
 
Lliçó 9. Genètica de sistemes: integració de dades òmiques
 
Lliçó 10. Metagenòmica
 
Lliçó 11. Inteligència artificial i aprenetatge automàtic en Genòmica

Sessió de seminaris dels estudiants
 
Conferència de clausura

Activitats formatives i Metodologia

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classes teòrica-pràctiques 37 1,48
Resolució de problemes a classe i treballs a l'aula d'ordinadors 28 1,12
Seminaris 4 0,16
Tipus: Supervisades      
Treballs individuals i en grups 120 4,8
Tipus: Autònomes      
Estudi regular 107 4,28

La metodologia combina clases magistrals, resolució de problemes pràctics i casos reals, treball al laboratori de computació, realització de treballs individuals i equip, conferències i discussió dels articles relacionats amb els blocs temàtics. Com a recurs TIC utilitzarem la plataforma virtual d’envestigació del màster.

 

 

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Avaluació

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Habilitats toves (assistència, puntualitat, participació activa a classe) 10% 0 0 1, 4, 12, 10, 14
Portafoli de l'estudiant 50% 0 0 1, 3, 2, 4, 5, 6, 7, 8, 9, 12, 10, 11, 14, 13
Prueba teòrica-pràctica individual 40% 4 0,16 1, 3, 2, 4, 5, 6, 7, 8, 9, 12, 10, 11, 14, 13

El sistema d'avaluació està organitzat en tres activitats principals. Hi haurà, a més, un examen de recuperació. Els detalls de les activitats són:

Activitats d'avaluació principals

  • Portafoli de l'estudiant (55%): Treball realitzat i presentat per l'estudiant 
  • Proves teòriques i pràctiques individuals (35%)
  • Habilitats toves (10%): assistència, puntualitat i participació proactiva a classe

Examen de recuperació

Per poder optar a la recuperació, l'estudiant haurà d'haver participat prèviament en un conjunt d'activitats que equival, com a mínim, als dos terços de la puntuació final del mòdul. El professorat informarà dels procediments i terminis per al procés de recuperació. Cal notar que les habilitats toves no poden recuperar-se.

No avaluable

L'alumne serà qualificat com a "No avaluable" quan el pes de l'avaluació en què ha participat sigui inferior a l’equivalent al 67% de la nota final del mòdul.

Avaluació única

L’alumnat que s’aculli a l’avaluació única farà una única prova de síntesi en la que s’avaluaran els continguts de tot el programa de teoria de l'assignatura. La prova constarà de preguntes teòriques i problemes i es farà coincidint amb la mateixa data fixada en calendari per a la darrera prova d’avaluació continuada.

S’aplicarà el mateix sistema d'avaluació que per a l’avaluació continuada. La nota obtinguda en aquesta prova de síntesi suposarà el 40% de la nota final de l’assignatura.

Els seminaris i problemes (portafoli) es valoren de la mateixa manera que a l’avaluació continuada amb les mateixes dates. La nota obtinguda suposarà el 60% de la nota final de l’assignatura.

 

Bibliografia

Referències bàsiques

  • Archibald, J. M. 2018. Genomics: A Very Short Introduction. The Very Short Introductions series from Oxford University Press.
  • Brown, T. A. 2018. Genomes. 4r edition. Garland Science 
  • Mäkinen, V.; Belazzougui, D.; Cunial, F. and Tomescu, A.I. 2023. Genome-Scale Algorithm Design: Bioinformatics in the Era of High-Throughput Sequencing. 2nd edition. Cambridge University Press.
  • Compeau, P and P. Pevzner. 2015. Bioinformatics Algorithms Volume 1 and 2. 2n edition. Active Learning Publishers LLC
  • Gibson, G. and S. V. Muse, 2009. A Primer of Genome Science. Sinauer, Massachusetts. 3rd edition.
  • Barnes, M. 2007. Bioinformatics for geneticists (2nd Ed.) Wiley.
  • Brown, T. A. 2018. Genomes. 4th edition. Taylor & Francis Inc.
  • Lesk, M. K. 2017. Introduction to Genomics. 3rd edition. Oxford Univ. Press.
  • Makinen, V.; A. Belazzougui, F. Cunial, A.I. Tomescu. 2105. Genome-Scale Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing. Cambridge Univ Press.
  • Pevnser, J. 2009. Bioinformatics and Functional Genomics (2nd edition). Wiley-Blackwell.
  • Pevzner, P. and R. Shamir. 2011. Bioinformatics for Biologists. Cambridge University Press
  • Samuelsson, T. 2012. Genomics and Bioinformatics: An Introduction to Programming Tools for Life Scientists. Cambridge University Press. 
  • Exhaustive Bioinformatics Books List (https://www.iscb.org/iscb-publications-bioinformatics-review/35-ISCB%20Publications/ISCB%20Publications/125-booklistaikchoontan)
  • Genomics articles from across Nature Portfolio (https://www.nature.com/subjects/genomics)

 

Web recomanades

  • National Human Genome ResearchInstitute (USA) (http://www.genome.gov/)
  • Genomic careers (http://www.genome.gov/genomicCareers/video_find.cfm)
  • 1000 genomes project (http://www.internationalgenome.org/)
  • PopHuman database (http://pophuman.uab.es)
  • PopLife database (https://poplife.pic.es/)
  • Genome online databases (GOLD) (https://gold.jgi.doe.gov/)
  • Genome data viewer NCBI (https://www.ncbi.nlm.nih.gov/genome/gdv/)
  • Ensembl genome browser (http://www.ensembl.org)
  • UCSC genome browser (http://genome.ucsc.edu/)
  • Genome size databases (http://www.genomesize.com/)
  • Bioinformatics Barcelona (https://bioinformaticsbarcelona.eu/es/)
  • Course: Gurrent topics in Genome Analysis 2016. NHGRI (http://www.genome.gov/12514288)
  • International Society for Computational Biology (https://www.iscb.org/)

 

 


Llista d'idiomes

Nom Grup Idioma Semestre Torn
(PLABm) Pràctiques de laboratori (màster) 1 Anglès primer quadrimestre matí-mixt
(SEMm) Seminaris (màster) 1 Anglès primer quadrimestre matí-mixt
(TEm) Teoria (màster) 1 Anglès primer quadrimestre matí-mixt