Logo UAB

Gestió de Dades

Codi: 106566 Crèdits: 6
2024/2025
Titulació Tipus Curs
2504392 Intel·ligència Artificial / Artificial Intelligence OB 3

Professor/a de contacte

Nom:
Javier Panadero Martinez
Correu electrònic:
javier.panadero@uab.cat

Equip docent

Alvaro Wong Gonzalez

Idiomes dels grups

Podeu consultar aquesta informació al final del document.


Prerequisits

Encara que no hi ha prerequisits formalment establerts i és responsabilitat de la pròpia assignatura proporcionar als i les alumnes un mitjà per adquirir els coneixements descrits a l’apartat de continguts de l’assignatura. És recomanable: un bon coneixement de programació, del funcionament d'un computador, del sistema operatiu a nivell d'usuari programador i dels sistemes de bases de dades relacionals i no relacional.


Objectius

L'objectiu d'aquesta assignatura és conèixer els conceptes fonamentals dels Sistemes Distribuïts i els paradigmes de processament massiu de dades. Es veuran models de programació per aplicacions de processament "batch", en memòria i en "streaming". Arquitectures d'aplicacions i revisió de conceptes rellevants respecte al tractament de les dades com integritat, accessibilitat, fiabilitat, consistència i seguretat en el processament de dades a gran escala.


Competències

  • Analitzar i resoldre problemes de manera efectiva, i generar propostes innovadores i creatives per aconseguir els objectius.
  • Conceptualitzar i modelar alternatives de solucions complexes per a problemes d’aplicació de la intel·ligència artificial en diferents àmbits, i planificar i gestionar projectes per al disseny i desenvolupament de prototips que demostrin la validesa del sistema proposat.
  • Conèixer i utilitzar de manera eficient les tècniques i eines de representació, manipulació, anàlisi i gestió de dades a gran escala.
  • Introduir canvis en els mètodes i els processos de l’àmbit de coneixement per donar respostes innovadores a les necessitats i demandes de la societat. 
  • Que els estudiants hagin demostrat que comprenen i tenen coneixements en una àrea d'estudi que parteix de la base de l'educació secundària general, i se sol trobar a un nivell que, si bé es basa en llibres de text avançats, inclou també alguns aspectes que impliquen coneixements procedents de l'avantguarda d'aquell camp d'estudi.
  • Treballar cooperativament per aconseguir objectius comuns, assumint la pròpia responsabilitat i respectant el rol dels diferents membres de l’equip.

Resultats d'aprenentatge

  1. Analitzar i resoldre problemes de manera efectiva, i generar propostes innovadores i creatives per aconseguir els objectius.
  2. Concebre, dissenyar i implementar processos de recopilació i anotació de dades adequats al problema concret a resoldre.
  3. Conèixer els conceptes bàsics de sistemes distribuïts de dades i l’ús d’eines de processament massiu de dades.
  4. Escollir els mètodes d’emmagatzematge més apropiats que permetin una posterior recuperació i anàlisi de dades eficient.
  5. Proposar nous mètodes o solucions alternatives fonamentades.
  6. Que els estudiants hagin demostrat que comprenen i tenen coneixements en una àrea d'estudi que parteix de la base de l'educació secundària general, i se sol trobar a un nivell que, si bé es basa en llibres de text avançats, inclou també alguns aspectes que impliquen coneixements procedents de l'avantguarda d'aquell camp d'estudi.
  7. Treballar cooperativament per aconseguir objectius comuns, assumint la pròpia responsabilitat i respectant el rol dels diferents membres de l’equip.

Continguts

1. Introducció a les aplicacions massives de dades

2. Conceptes fonamentals del tractament de dades en entorns massius: fiabilitat, escalabilitat, sostenibilitat. Models de dades i llenguatges de consulta.

3. Gestió de grans volums de dades. Data warehousing. Principis dels sistemes Data warehousing, Business intelligence, modelització multidimensional, operadors OLAP, esquema en estrella, procès ETL

4. Introducció a les bases de dades a memòria amb Redis

5. Aplicacions amb gran volums de dades amb eines Apache. Introducció a les eines i ecosistema Apache Spark per a processar grans volums de dades. Utilització de Dataframes i MLib


Activitats formatives i Metodologia

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Estudi de casos d'ús 9 0,36 1, 2, 5, 7
Pràctiques 12 0,48 2, 4, 3, 7
Teoria 20 0,8 2, 4, 6, 3
Tipus: Autònomes      
Estudi autònom 30 1,2 1, 4, 6, 3
Preparació de casos d'estudi 20 0,8 1, 2, 5, 4, 3, 7
Preparació de laboratoris 32 1,28 1, 2, 7

En el desenvolupament de l'assignatura es podran diferenciar els següents tipus d’activitats docents:

Classes teòriques: exposició de la part teòrica de cada tema del programa. L'estructura típica d'una classe d'aquest tipus serà la següent: en primer lloc es farà una introducció on es presentaran breument els objectius de l'exposició i els continguts a tractar. A continuació es desgranaran els continguts objecte d’estudi, incloent exposicions narratives, desenvolupaments formals que proporcionin els fonaments teòrics, i intercalant exemples, que il·lustrin l'aplicació dels continguts exposats. Finalment, el/la professor/a exposarà les conclusions dels continguts. Durant tot el curs hi hauran avaluacions continuades de grups de temes.

Sessions de laboratori. La part pràctica dels temes teòrics quedarà completada amb sessions al laboratori, on l'estudiant desenvoluparà una sèrie de programes i haurà d'intentar resoldre problemes concrets que seran publicats al començar el temari. Alguns d’aquests exercicis s’hauran d’entregar al campus virtual en les dates especificades. Les pràctiques es desenvoluparan en grups de dos estudiants. Les classes inclouen un conjunt de 6 sessions al laboratori, de 2 hores de durada, on l’alumne realitzarà el desenvolupament dels enunciats publicats.

Problemes: revisió de casos pràctics. Es presentarà una llista de casos pràctics amb reptes de dades relacionats amb objectius d’anàlisi de negoci a realitzar. Els estudiants treballaran en grup per presentar les conclusions del seu estudi de forma oral a unes sessions determinades i es realitzarà una avaluació en grup dels treballs presentats.

Aquest plantejament del treball està orientat a promoure un aprenentatge actiu i a desenvolupar les competències de capacitat d'organització i planificació, comunicació oral i escrita, treball en equip i raonament crític. La qualitat dels exercicis realitzats, de la seva presentació i del seu funcionament es valorarà especialment.

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Avaluació

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Control individual 1 30% 2 0,08 1, 6, 3
Control individual 2 30% 2 0,08 1, 6, 3
Estudi de casos pràctics 10% 5 0,2 1, 5, 4, 3, 7
Laboratoris de pràctiques 30% 18 0,72 1, 2, 4, 3, 7

L'objectiu del procés d'avaluació és verificar que l'alumne ha assolit els coneixements i habilitats definits en els objectius de l'assignatura, així com les competències.

S’avaluaran els següents tipus d’activitats de manera independent on la suma ponderada d’elles donarà la nota final. Aquestes activitats són:

    Teoria (T)

    Resolució de les pràctiques de laboratori (PL)

    Realització d'un informe i una presentació sobre un cas pràctic d'estudi (PA).

La part de Teoria (T) s’avaluarà amb dos controls parcials individuals durant tot el curs.  La nota final de Teoria sortirà de la suma ponderada dels dos controls (0.5*Control 1 + 0.5*Control 2). Hi haurà una segona oportunitat per recuperar aquesta part el dia que tenim assignat a la setmana de exàmens de juny. Només es podran recuperar les parts que no hagin estat superades en els controls parcials de teoria. La nota mínima per aprovar aquesta part és >= 4,5. Cada parcial ha de tenir una nota mínima de 4 per poder calcular la mitjana final de teoria. És necessari aprovar les pràctiques per a aprovar l’assignatura.

La part de Resolució de pràctiques de laboratori (PL) s’avaluarà de manera grupal. Estan planificats inicialment quatre lliuraments. La nota final sortirà de la suma ponderada dels lliuraments. Per aprovar les PL la nota mínima haurà de ser >=4,5. Només hi ha una única oportunitat (no es pot recuperar aquesta part). És obligatori presentar totes les entregues de pràctiques per aprovar l'assignatura.

Els casos d'estudi es presentaran de forma oral i escrita i s'avaluaran de forma creuada per tota la classe i pel professor.  El valor d'aquests exercicis és del 10%de la notafinal i donada la seva naturalesa i objectiu no són recuperables.

La nota final de l'assignatura serà la suma ponderada de les notes de cadascuna de les quatre activitats: 60% de Teoria, 10% Casos d'estudi i 30% de Resolució de pràctiques de laboratori. El resultat haurà de ser >= 5.

En cas de no superar l'assignatura per no arribar a la puntuació mínima en algun dels apartats (Teoria o Pràctiques de Laboratori), tot i que al fer la mitjana ponderada la nota final fos igual o superior a 5 la nota que es posarà a l'expedient serà de 4,5.

En cas de que la mitjana no arribi a 5 la nota que figurarà a l'expedient serà la nota mitjana obtinguda numèricament.

Si l'alumne entrega qualsevol activitat, s’entén que es presenta a l'assignatura i serà avaluat/da. Si no entrega cap activitat, es pot considerar No avaluable.

Atorgar una qualificació de matrícula d’honor és decisió del professorat responsable de l’assignatura. La normativa de la UAB indica que les MH només es podran concedir a estudiants que hagin obtingut una qualificació final igual o superior a 9.00. Es pot atorgar fins a un 5% de MH del total d'estudiants matriculats.

Les dates d'avaluació continuada i lliurament de treballs es publicaran al campus virtual i poden estar subjectes a possibles canvis de programació per motius d'adaptació a possibles incidències; sempre s'informarà al campus virtual sobre aquests canvis ja que s’entén que el CV és el mecanisme habitual d'intercanvi d'informació entre el professorat i els/les estudiants.

Per a cada activitat d’avaluació, s’indicarà un lloc, data i hora de revisió en la que l'estudiant podrà revisar l’activitat amb el/la professor/a. En aquest context, es podran fer reclamacions sobre la nota de l’activitat, que seran avaluades pel professorat responsable de l’assignatura. Si l'estudiant no es presenta a aquesta revisió, no es revisarà posteriorment aquesta activitat.

Nota sobre plagis:

Sense perjudici d'altres mesures disciplinàries que s'estimin oportunes, i d'acord amb la normativa acadèmica vigent, les irregularitats comeses per un o una estudiant que puguin conduir a una variació de la qualificació en una activitat avaluable es qualificaran amb un zero (0). Les activitats d'avaluació qualificades d'aquesta forma i per aquest procediment no seran recuperables. Si és necessari superar qualsevol d'aquestes activitats d'avaluació per aprovar l'assignatura, aquesta assignatura quedarà suspesa directament, sense oportunitat de recuperar-la en el mateix curs. Aquestes irregularitats inclouen, entre d'altres:

la còpia total o parcial d'una pràctica, informe, o qualsevol altra activitat d'avaluació; deixar copiar; presentar un treball de grup no fet íntegrament pels i les membres del grup (aplicat a tots els i les membres, no solament als que no han treballat); presentar com a propis materials elaborats per un tercer, encara que siguin traduccions o adaptacions, i en general treballs amb elements no originals i exclusius de l'estudiant; tenir dispositius de comunicació (com telèfons mòbils, smart watches, bolígrafs amb càmera, etc.) accessibles durant les proves d'avaluació teorico-pràctiques individuals (exàmens); parlar amb companys o companyes durant les proves d'avaluació teorico-pràctiques individuals (exàmens); copiar o intentar copiar d'altres alumnes durant les proves d'avaluació teorico-pràctiques (exàmens); usar o intentar usar escrits relacionats ambla matèria durant la realització de les proves d'avaluació teorico-pràctiques (exàmens), quan aquests no hagin estat explícitament permesos.

En cas de no superar l'assignatura degut a que alguna de les activitats d'avaluació no arriba a la nota mínima requerida, lanota numèrica de l'expedient serà el valor menor entre 4.5 i la mitjana ponderada de les notes. Amb les excepcions de que s'atorgarà la qualificació de "No Avaluable" als i les estudiants que no participin en cap de les activitats d'avaluació, i de que la nota numèrica de l'expedient serà el valor menor entre 3.0 i la mitjana ponderada de les notes en cas que l'estudiant hagi comès irregularitats en un acte d'avaluació (i per tant no serà possible l'aprovat per compensació). En edicions futures d'aquesta assignatura, a l'estudiant que hagi comès irregularitats en un acte d'avaluació no se li convalidarà cap delesactivitats d'avaluació realitzades.

En resum: copiar, deixar copiar o plagiar(o l'intent de) en qualsevol de les activitats d'avaluació equival a un SUSPENS, no compensable i sense convalidacions de parts de l’assignatura en cursos posteriors.

Finalment, els estudiants que facin aquesta assignatura per segona vegada podran sol·licitar la convalidació de pràctiques de laboratori amb una nota màxima de 6,0. Si l'estudiant va obtenir una qualificació inferior a 6,0, es conservarà la qualificació de l'any anterior.


Bibliografia

Designing Data intensive applications - Martin Kleppmann, O'Reilly, 2017

The Data warehouse ETL toolkit - Ralph Kimball, Joe Caserta. Wiley, 2004

Spark, the definitive guide, Big data processing made simple. Bill Chambers and Matei Zaharia, O'Reilly, 2018

Learning Spark - Lightning fast data analysis - Holden Karau, Andi Konwinski, Patrick Wendell, Matei Zaharia, O'Reilly, 2015

Beginning Scala - Layka, Vishal. Apress; 2nd ed. 2015. 

Redis in Action - Josiah L. Carlson. Manning, 2013. 


Programari

S'utilitzaran els serveis al núvol proporcionats per l'Escola a la plataforma OpenNebula


Llista d'idiomes

Nom Grup Idioma Semestre Torn
(PAUL) Pràctiques d'aula 1 Anglès primer quadrimestre tarda
(PLAB) Pràctiques de laboratori 1 Anglès primer quadrimestre tarda
(PLAB) Pràctiques de laboratori 2 Anglès primer quadrimestre tarda
(TE) Teoria 1 Anglès primer quadrimestre tarda