Logo UAB

Modelización Avanzada

Código: 104865 Créditos ECTS: 6
2024/2025
Titulación Tipo Curso
2503852 Estadística Aplicada OB 3

Contacto

Nombre:
Ferran Torres Benitez
Correo electrónico:
ferran.torres@uab.cat

Equipo docente

Jose Rios Guillermo

Idiomas de los grupos

Puede consultar esta información al final del documento.


Prerrequisitos

Se asume la consecución previa de conocimientos suficientes tanto en estadística teórica (modelos lineales, inferencia estadística y cálculo de probabilidades) cómo en manejo aplicado de software estadístico. Las prácticas se podrán seguir con R, SAS o Stata.

Es prerrequisito un nivel de inglés suficiente para comprender artículos científicos y poder aplicar conocimientos de modelización.


Objetivos y contextualización

Aprender diferentes estrategias de modelización para el análisis de datos, tanto en cuanto a la vertiente teórica como sus aplicaciones. Proporcionar los conocimientos aplicados en cuanto a diseño, organización, realización, supervisión, análisis, interpretación y difusión de resultados.

Los objetivos generales de la asignatura son:

1. Conocer las bases para la aplicación de los diferentes modelos
2. Entender criterios para selección de variables en función de los objetivos
3. Adquirir conocimientos sobre la interpretación y implicaciones de diferentes modelos
4. Adquirir y aplicar conocimientos de programación

 


Resultados de aprendizaje

  1. CM09 (Competencia) Valorar la adecuación de los modelos con la utilización e interpretación correcta de indicadores y gráficos.
  2. CM09 (Competencia) Valorar la adecuación de los modelos con la utilización e interpretación correcta de indicadores y gráficos.
  3. CM10 (Competencia) Modificar el software existente si el modelo estadístico propuesto lo requiere, o crear nuevo software, si fuera necesario.
  4. KM12 (Conocimiento) Proporcionar las hipótesis experimentales de la modelización, teniendo en cuenta las implicaciones técnicas y éticas relacionadas.
  5. KM12 (Conocimiento) Proporcionar las hipótesis experimentales de la modelización, teniendo en cuenta las implicaciones técnicas y éticas relacionadas.
  6. SM12 (Habilidad) Interpretar los resultados obtenidos para formular conclusiones respecto a las hipótesis experimentales
  7. SM14 (Habilidad) Emplear gráficos de visualización del ajuste y de la adecuación del modelo.

Contenido

  • Conceptos básicos en estadística aplicada a modelización
  • Obtención, supervisión y preparación de los datos
  • Medidas de efecto y modelos relacionados. Selección de modelos en función del diseño
  • Modelos usados en estudios con factores de confusión y modificadores del efecto. Papel de diferentes (co) variables
  • Aplicación de modelos de regresión logística multivariante y variantes
  • Propensity resultado y otras alternativas para control de factores de confusión
  • Meta-análisis ajustados para datos individuales
  • Medidas repetidas ajustadas con efectos fijos y aleatorios

Habrá ejemplos prácticos en cada bloque y los alumnos deberán entregar prácticas realizadas en grupos


Actividades formativas y Metodología

Título Horas ECTS Resultados de aprendizaje
Tipo: Dirigidas      
Clase práctica 50 2
Clase teórica 50 2

Actividades dirigidas:

  • Clases teóricas (TE). Cada bloque temático se iniciará con una o varias clases teóricas presenciales donde el profesor explicará los conceptos clave, fomentará la interacción y discusión de dudas, y dará las pautas guía para el seguimiento y preparación de las actividades complementarias.

El material docente de apoyo contendrá los contenidos esenciales de las clases teóricas, estará disponible con antelación en el Campus Virtual de la asignatura, y se recomienda a los alumnos que lo tengan disponible durante la clase (formato ordenador, tableta o papel) para facilitar el su seguimiento.

  • Prácticas de Laboratorio (PLAB). Se ejecutarán las prácticas relacionadas con los conceptos teóricos. Se trabajará para ampliar y consolidar los conocimientos científicos y técnicos previos, y se usará artículos científicos que favorezcan la discusión. 

Actividades autónomas

  • Test de Autoaprendizaje. Se facilitarán tests de autoaprendizaje con retroalimentación, utilizando las utilidades de cuestionarios del aula Moodle del campus virtual de la asignatura, para facilitar el repaso de la materia sincronizada con la impartición del temario.
  • Trabajo en grupo. Se hará varios trabajos en equipo donde se tratará de aplicar los conocimientos aproximándose a una situación real tutelado por el profesor. Habrá resolver problemas planteado en el que habrá que consultar diversas fuentes y el uso de software estadístico. Se promoverá la capacidad de análisis, el razonamiento y la pericia del alumno en la resolución de problemas relacionados con el campo profesional.
  • Estudio personal. A pesar de la asignatura está eminentemente enfocada a la implementación práctica de los conocimientos en modelización avanzada, habrá un esfuerzo individual mínimo para asentar las clases teóricas.

Tutorías y atención personal a los estudiantes

Se espera que los estudiantes asistan a clase y consulten las dudas participando activamente en la discusión de las mismas. No obstante, el alumno puede consultar con los profesores usando el foro del campus virtual y los correos electrónicos indicados en el equipo docente

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.


Evaluación

Actividades de evaluación continuada

Título Peso Horas ECTS Resultados de aprendizaje
Evaluación continuada presencial en clase 15% 4 0,16 CM09, CM10, KM12, SM12, SM14
Examen 1 15% 6 0,24 CM09, CM10, KM12, SM12, SM14
Examen 2 15% 6 0,24 CM09, CM10, KM12, SM12, SM14
Tests de autoaprenendizaje 10% 4 0,16 CM09, CM10, KM12, SM12, SM14
Trabajos prácticos 45% 30 1,2 CM09, CM10, KM12, SM12, SM14

En el caso de que se cumplan los criterios por promediar, entonces la nota final de la asignatura se calculará usando las ponderaciones descritas en este apartado. En caso contrario, será necesario recuperar las actividades afectadas para poder hacer el promedio. Es necesario obtener un mínimo de 5puntos sobre 10 para aprobar la asignatura.

Para evaluar el grado de consecución de las competencias, se contará con los siguientes instrumentos y ponderaciones:

 

Exámenes

Se realizarán dos exámenes parciales con una ponderación del 15% cada uno donde los alumnos deberán contestar preguntas sobre los conceptos teóricos y aplicados. La nota mínima para ponderar es de 3 sobre 10.

Estas actividades son obligatorias. Para poder acceder a la recuperación es necesario haber efectuado el 80%de las actividades evaluables y haberse presentado a los 2 parciales. 

 

Trabajos de prácticas

Estas actividades son obligatorias y es necesario tener al menos una nota de 4 sobre 10 en cada una de ellas, en caso contrario será necesario recuperar las actividades afectadas. Las prácticas puntúan un 45% de la nota global de la asignatura.

Entregas fuera de plazo:

  • La entrega de las prácticas fuera de plazo implicará una penalización del 20% sobre la nota obtenida. 

Estas actividades son obligatorias y recuperables.

 

Actividades de autoaprendizaje

Tendrán un peso del 10% siempre que se hayan realizado al menos un 80% de las actividades, en caso contrario la nota de esta parte será un cero. No hay nota mínima para estas actividades.

Entregas fuera de plazo:

  • La entrega de estas actividades tarde y hasta 48 horas fuera de plazo, implicará una penalización del 20% sobre la nota obtenida.
  • La entrega tardía de actividades con posterioridad a este margen de 48 horas comportará que se computen como no realizadas de cara a la evaluación.

Estas actividades no son obligatorias, pero tampoco son recuperables.

 

Formación y evaluación continua

Se recuerda que la evaluación se hará de acuerdo con los contenidos comentados por el profesorado en clase, y que, por tanto, la asistencia presencial es altamente recomendable dado que no toda la información estará accesible en el campus virtual.

Además, durante el curso se realizará una evaluación continuada y será necesario haber participado en un 80% de las actividades evaluativas para que ponderen en un 15%, en caso contrario la nota de esta parte será un cero. Se utilizarán herramientas estándar de innovación docente que controlen la participación en clase. No hay nota mínima por estas actividades.

Estas actividades no son obligatorias, pero tampoco son recuperables.

 

Resumen de criterios y pesos para la evaluación de la asignatura

<tdwidth="104">No recuperable

 

Participación1

Participación mínima2

Nota mínima3

Actividad Recuperable4

Ponderación5

Examen      1erparcial

Obligatoria

100%

3

Obligatoria

15%

Examen     2doparcial

Obligatoria

100%

3

Obligatoria

15%

Trabajos      prácticos

Obligatoria

100%

4

Obligatoria

45%

Auto-       aprendizaje

Voluntaria

≥80%

NA

No recuperable

10%

Avaluación continuada

Voluntaria

≥80%

NA

15%

NA: No aplicable

1: Participación obligatoria implica que la no participación se tendrá que recuperar para poder ponderar, y si no se hace no se podrá promedia, y por tanto tampoco se podrá aprobar la asignatura. Participación voluntaria implica que no es obligatoria pero que tampoco se podrá recuperar con posterioridad

2: Valor de participación mínima para ponderar, en caso contrario las actividades contarán como un 0

3: Nota mínima sobre 10 puntos por ponderar con el resto, en caso de no alcanzar el mínimo se habrá de recuperar la actividad en concreto, sean cuales sean el resto de las notas de la misma tipología

4: Cuando la actividad es recuperable es necesario recuperarla si no se obtiene la nota mínima. En caso de actividad no recuperable, la nota no se podrá recuperar, y por tanto ponderará a la nota final, aunque sea 0 o inferior a cualquiera dintel

5: Valor de ponderación si se cumplen los criterios previos

 


Bibliografía

Faraway, J. (2006). Extending the Linear Model with R. Chapman & Hall.

Hosmer, D.W.; Lemeshow, S. & Sturdivant, R.X. (2013) Applied Logistic Regression. 3rd ed. Wiley.

Pinheiro JC & Bates D (2000) Mixed-Effects Models in S and S-PLUS. Springer.

T Hastie, R Tibshirani, J Friedman. (2009) The Elements of Statistical Learning. Data Mining, Inference and Prediction, Springer, New York.

Therneau T, Grambsch P. Modeling Survival Data: Extending the Cox Model (Statistics for Biology and Health). Springer-Verlag New York Inc.; Edición: 1st ed. 2000.

Venables, W. & Ripley, B. (2002). Modern Applied Statistics with S-PLUS. Springer

Verbeke G, Molenberghs G. Linear Mixed Models for longitudinal Data. New York: Springer-Verlag, 2000.


Software

SAS version 9.4 software (© SAS Institute Inc., Cary, NC, USA)

STATA (© Stata Corporation, College Station, TX, USA) and

R (© 2010 R free software foundation: http://www.r-project.org).

 


Lista de idiomas

Nombre Grupo Idioma Semestre Turno
(PLAB) Prácticas de laboratorio 1 Catalán segundo cuatrimestre tarde
(TE) Teoría 1 Catalán segundo cuatrimestre tarde