Logo UAB

Probabilitat

Codi: 104847 Crèdits: 6
2024/2025
Titulació Tipus Curs
2503852 Estadística Aplicada FB 1

Professor/a de contacte

Nom:
Maria Merce Farre Cervello
Correu electrònic:
merce.farre@uab.cat

Idiomes dels grups

Podeu consultar aquesta informació al final del document.


Prerequisits

Càlcul 1 i Introducció a la probabilitat.


Objectius

La Probabilitat és una branca de la Matemàtica que té múltiples applicacions en practicament totes les àrees de la ciència i la tecnologia. És també el llenguatge de l'estadística inferencial. Això la fa una de les matèries fonamentals del Grau d'Estadística Aplicada. En aquest segon curs es pretén aprofundir en alguns dels temes iniciats a l'assignatura d'Introducció a la Probabilitat i presentar nous temes com són la simulació de variables aleatòries i les cadenes de Markov.


Resultats d'aprenentatge

  1. KM10 (Coneixement) Descriure les característiques de les funcions de distribució i densitat de variables aleatòries.
  2. SM09 (Habilitat) Analitzar dades mitjançant diferents tècniques d'inferència utilitzant programari estadístic.

Continguts

1. Generació de variables aleatòries en base a nombres aleatoris amb llei uniforme.    

2. Vectors aleatoris:  

  • Esperança d’una funció d’un vector aleatori. Covariància i correlació.
  • Variables aleatòries independents.
  • Esperança i variància condicionals.
  • Càlculs en el cas dels vectors aleatoris discrets.

3. Moments d’una variable aleatòria i funció generatriu de moments. Propietats i aplicacions.

4. Convergència d’una successió de variables aleatòries: Quasi-segura, en probabilitat i en distribució. Relacions i propietats.  

5. Les Lleis dels Grans Nombres i el Teorema Central del Límit. Aplicacions.

6. Introducció als processos aleatoris: Cadenes de Markov amb espai d’estats finit. La funció generatriu de probabilitats.


Activitats formatives i Metodologia

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classes de problemes 18 0,72
Classes de teoria 26 1,04
Tipus: Supervisades      
Classes de pràctiques 8 0,32
Tipus: Autònomes      
Estudi personal 82 3,28

Hi haurà tres tipus d'activitatats presencials: classes de teoria, classes de problemes i classes de pràctiques.

A les classes de teoria es desenvoluparan els conceptes i resultats que formen el cor de la matèria.

S'editarà un recull de llistes de problemes per al treball a classe de problemes que els alumnes hauran d'haver treballat abans.

Les pràctiques seran a les aules d'informàtica i usarant programari especialitzat com R. L'assistència a les classes de pràctiques és obligatòria.

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Avaluació

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Avaluació continuada 100% 12 0,48 KM10, SM09
Examen de recuperació 80% 4 0,16 KM10, SM09

L'avaluació continuada constarà de dos exàmens parcials (teoria i problemes) amb un pes respectiu del 35% el primer (P1) i del 45% el segon (P2), i l'avaluació de les pràctiques d'aula o amb ordinador (Pr) que representarà el 20% de la nota final.

NF = 0,35·P1 + 0,45·P2 + 0,2·Pr

En l'avaluació de les pràctiques, siguin d'aula o amb ordinador,  es tindran en compte els lliuraments de tasques programades i la realització de controls.

La part recuperable en l'examen finan serà només la corresponent als exàmens parcials. Els exàmens parcials són eliminatoris.

Per aprovar l'assignatura cal tenir un mínim de 3,5 en la mitjana ponderada dels parcials (o la recuperació) i en la nota mitjana de la part pràctica, a més de un mínim de 5 en NF.

Avaluació única

L'avaluació única serà una prova de síntesi de les competències dels dos parcials, en base a: (1)  Un examen amb qüestions de teoria i problemes (pes: 80%). (2) Una prova de practiques davant de l’ordinador (pes: 10%). (3) El lliurament de les tasques programades que s’indiquin, amb la possibilitat de que el professorat demani que l’estudiant expliqui detalls d’aquests lliuraments (pes: 10%).


Bibliografia

X. Bardina. Càlcul de probabilitats. Materials UAB, 139.

M.H. de Groot. Probabilidad y estadística. Addison-Wesley Iberoamericana.

W. Mendenhall et al. Estadísitica Matemática con aplicaciones. Grupo editorial Iberoamérica.

K.L. chung. Teoría elemental de la probabilidad y los procesos estocásticos. Ed. Reverté.

S.M. Ross. A First course in probability. Ed. MacMillan.


Programari

S'utilitzara el programari estadístic R.


Llista d'idiomes

Nom Grup Idioma Semestre Torn
(PAUL) Pràctiques d'aula 1 Català segon quadrimestre matí-mixt
(PLAB) Pràctiques de laboratori 1 Català segon quadrimestre tarda
(PLAB) Pràctiques de laboratori 2 Català segon quadrimestre tarda
(TE) Teoria 1 Català segon quadrimestre tarda