Logo UAB

Introducció Al Big Data

Codi: 104748 Crèdits: 6
2024/2025
Titulació Tipus Curs
2503873 Comunicació Interactiva OB 3

Professor/a de contacte

Nom:
Michele Catanzaro
Correu electrònic:
michele.catanzaro@uab.cat

Equip docent

Alessandro Bernardi

Idiomes dels grups

Podeu consultar aquesta informació al final del document.


Prerequisits

L'assignatura no té requisits obligatoris, però es recomana la superació prèvia de les següents assignatures de l'grau:

Sistemes d'informació

Emmagatzematge i recuperació d'informació

Serveis Web Avançats


Objectius

L'objectiu principal de l'assignatura és introduir els i les estudiants en els conceptes bàsics i en les pràctiques principals del Big Data.

Així mateix, el curs té els següents objectius específics:

1. Introduir els conceptes de fonts i tipus de dades (estructura, classificació, integració i qualitat).

2. Promoure el treball amb fonts d'Open Data.

3. Realitzar les primeres aproximacions a l'anàlisi de bases de dades en entorns d'eines de treball amb fulls de càlcul i altres eines pràctiques.

4. Desenvolupar un coneixement propedèutic per al desenvolupament posterior d'aplicacions de Business Intelligence: el desenvolupament de solucions de big data per a la intel·ligència de negoci i la seva influència en la presa de decisions.


Competències

  • Actuar amb responsabilitat ètica i amb respecte pels drets i deures fonamentals, la diversitat i els valors democràtics.
  • Actuar en l'àmbit de coneixement propi avaluant les desigualtats per raó de sexe/gènere.
  • Actuar en l'àmbit de coneixement propi valorant l'impacte social, econòmic i mediambiental.
  • Cercar, seleccionar i jerarquitzar qualsevol tipus de font i document útil per a l'elaboració de missatges, treballs acadèmics, exposicions, etc.
  • Gestionar el temps de manera adequada i ser capaç de planificar tasques a curt, mitjà i llarg terminis.
  • Introduir canvis en els mètodes i els processos de l'àmbit de coneixement per donar respostes innovadores a les necessitats i demandes de la societat.
  • Promocionar i llançar nous productes i serveis a partir de l'extracció i l'anàlisi de dades massives dels mitjans de comunicació.
  • Que els estudiants hagin desenvolupat aquelles habilitats d'aprenentatge necessàries per emprendre estudis posteriors amb un alt grau d'autonomia.
  • Que els estudiants puguin transmetre informació, idees, problemes i solucions a un públic tant especialitzat com no especialitzat.
  • Que els estudiants sàpiguen aplicar els coneixements propis a la seva feina o vocació d'una manera professional i tinguin les competències que se solen demostrar per mitjà de l'elaboració i la defensa d'arguments i la resolució de problemes dins de la seva àrea d'estudi.
  • Reconèixer i planificar la infraestructura tecnològica necessària per a la creació, l'emmagatzematge, l'anàlisi i la distribució de productes multimèdia interactius i de l'internet social.

Resultats d'aprenentatge

  1. Analitzar críticament els principis, valors i procediments que regeixen l'exercici de la professió.
  2. Analitzar una situació i identificar-ne els punts de millora.
  3. Compartir les experiències en grup com a forma d'aprenentatge per treballar posteriorment en grups multidisciplinaris.
  4. Comunicar fent un ús no sexista ni discriminatori del llenguatge.
  5. Contrastar i verificar la veracitat de les informacions aplicant criteris de valoració.
  6. Descriure la infraestructura necessària per a l'emmagatzemament del big data.
  7. Diferenciar allò substancial d'allò rellevant en tots els tipus de documents de l'assignatura.
  8. Diferenciar les varietats de tipus d'arquitectures existents per treballar amb big data.
  9. Explicar el codi deontològic, explícit o implícit, de l'àmbit de coneixement propi.
  10. Explicar la infraestructura necessària per al tractament del big data.
  11. Explicar les característiques de la infraestructura necessària per a la recuperació del big data.
  12. Extreure grans masses de dades, sobretot de les xarxes socials i dels nous mitjans digitals.
  13. Identificar les implicacions socials, econòmiques i mediambientals de les activitats academicoprofessionals de l'àmbit de coneixement propi.
  14. Identificar situacions que necessiten un canvi o millora.
  15. Planificar i executar projectes acadèmics en l'àmbit del big data.
  16. Ponderar els riscos i les oportunitats de les propostes de millora tant pròpies com alienes.
  17. Presentar els treballs de l'assignatura en els terminis previstos i mostrar-ne la planificació individual o grupal aplicada.
  18. Proposar nous mètodes o solucions alternatives fonamentades.
  19. Proposar projectes i accions que estiguin d'acord amb els principis de responsabilitat ètica i de respecte pels drets humans i els drets fonamentals, la diversitat i els valors democràtics.
  20. Proposar projectes i accions que incorporin la perspectiva de gènere.
  21. Proposar projectes i accions viables que potenciïn els beneficis socials, econòmics i mediambientals.
  22. Solucionar problemes bàsics del big data.
  23. Valorar l'impacte de les dificultats, els prejudicis i les discriminacions que poden incloure les accions o els projectes, a curt o mitjà terminis, en relació amb determinades persones o col·lectius.

Continguts

Unitat 1. El Big Data: Introducció a l'assignatura. Concepte del Big Data, els seus processos i les seves característiques. Intel·ligència Artificial i Big Data.

Unitat 2. Fonts, captura i emmagatzematge de dades: Presentació de fonts de dades (principalment fonts obertes), dels processos d'accés i sol·licituds d'informació pública i lleis de transparència. Processos de recerca, descàrrega i emmagatzematge de diferents tipus de dades (formats).

Unitat 3. Processament i anàlisi de dades: Ús d'eines i funcions de neteja i anàlisi de dades per a la presa de decisions. Estadística bàsica per al tractament de les dades.

Unitat 4. Anàlisi i seguiment de dades de Social Media: Introducció a Social Media com a font de big data: presentació de tècniques i eines per extreure insights de les xarxes socials.

Unitat 5. Visualització de dades i cartografia: Presentació d'eines de visualització de dades  i possibilitats de representació cartogràfica de la informació per a la presentació d'informes orientats a la presa de decisió.

(*) El calendari detallat amb el contingut de les diferents sessions s'exposarà el dia de presentació de l'assignatura. Es penjarà també al Campus Virtual on l'alumnat podrà trobar la descripció detallada dels exercicis i pràctiques, els diversos materials docents i qualsevol informació necessària per a l'adequat seguiment de l'assignatura. En cas de canvi de modalitat docent per raons sanitàries, el professorat informarà dels canvis que es produiran en la programació de l'assignatura i en les metodologies docents.

El contingut d'aquesta assignatura seràsensible als aspectes relacionats amb la perspectiva de gènere.


Activitats formatives i Metodologia

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Pràctiques de laboratori 33 1,32 2, 4, 1, 6, 8, 23, 11, 10, 12, 14, 13, 15, 18, 19, 20, 21, 3, 22, 16
Sessions teòriques 15 0,6 4, 1, 8, 11, 9, 10, 20, 22
Tipus: Supervisades      
Seminaris 10 0,4 2, 4, 1, 5, 6, 8, 7, 23, 11, 9, 10, 12, 14, 13, 15, 18, 19, 20, 21, 3, 22, 17, 16
Tutories 10 0,4 7, 15, 18, 21, 3, 22, 17
Tipus: Autònomes      
Treball autònom: realització de lectures, preparació de treballs i pràctiques i estudi personalcurs 60 2,4 1, 5, 6, 8, 7, 11, 10, 12, 15, 18, 20, 21, 3, 22, 17

L'estructura de l'assignatura, en la qual es realitzen diferents activitats pràctiques, busca la interiorització de competències relacionades amb l'ús del Big Data (recerca, extracció, anàlisi i publicació de dades per a la presa de decisions). La seva metodologia és completament pràctica. A través de les activitats de laboratori, de tallers i de la realització del treball final de curs, s'avalua tant el component teòric de l'assignatura, com l'aplicació pràctica dels continguts estudiats.

L'avaluació continuada de l'assignatura, en la qual es realitzen pràctiques puntuals i contínues de curta durada, permet realitzar un seguiment precís sobre l'aprenentatge i la progressió de l'estudiant. Així mateix, es treballa de forma progressiva sobre l'adquisició dels coneixements que, pas a pas, són involucrats en les pràctiques següents.

L'assignatura d'Introducció al Big Data contempla tres tipus o categories d'activitats formatives avaluables:

Pràctiques de laboratori: treballs individuals o en equip en els quals es realitzen activitats pràctiques amb un entregable puntual amb temps límit. Els estudiants han d'aplicar els coneixements, distribuir el temps i preparar els lliuraments dins de l'aula i en les hores destinades a la pràctica sota la guia de professor.

Seminaris: treballs individuals o en equip en què es realitzen activitats pràctiques més extenses i amb entregables oberts a la creativitat dels estudiants. No hi ha temps limitats a l'aula, però sí dates límits de lliurament. Els estudiants han d'aplicar els coneixements, distribuir el temps i preparar els lliuraments iniciant el seu treball dins de l'aula, però continuant sota la modalitat d'activitats supervisades per l'equip docent.

Treball final de curs: exercici pràctic d'avaluació grupal en el qual els estudiants han de resoldre, durant el desenvolupament del curs, un problema d'aplicació pràctica vinculat al Big Data. Els estudiants han de plantejar el problema i realitzar els quatre processos per brindar una proposta de solució basada en grans quantitats de dades: recerca, extracció, anàlisi i publicació de l'informe de dades que inclogui una proposta de decisió basada en la informació recol·lectada i analitzada.

 

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Avaluació

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Entrega de treballs 30% 6 0,24 2, 4, 1, 5, 7, 23, 9, 12, 14, 13, 15, 18, 19, 20, 21, 3, 22, 17, 16
Pràctiques d'aula 30% 8 0,32 2, 4, 1, 5, 6, 8, 7, 23, 11, 9, 10, 12, 14, 13, 15, 18, 19, 20, 21, 3, 22, 17, 16
Pràctiques de laboratori 40% 8 0,32 2, 4, 1, 5, 6, 8, 7, 23, 11, 9, 10, 12, 14, 13, 15, 18, 19, 20, 21, 3, 22, 17, 16

Avaluació continuada

Les activitats d'avaluació són:

Activitat A: Pràctiques de laboratori, que tenen un pes del 40% sobre la qualificació final

Activitat B: Pràctiques d'aula, que tenen un pes del 30% sobre la qualificació final

Activitat C: Entrega de treballs, que té un pes del 30% sobre la qualificació final

Per poder aprovar l'assignatura, cal treure una nota mínima aprovatòria (5,0) en cadascuna de les activitats.

 

RECUPERACIÓ: En les tres últimes setmanes del curs els estudiants que no hagin superat l'assignatura podran presentar-se a una prova de síntesi de reavaluació que consistirà en un test teòric i en un exercici pràctic. La condició obligatòria per poder optar a la recuperació de l'assignatura és haver fet, com a mínim, 2/3 del total de les pràctiques del curs (activitats A, B i C) i haver obtingut una nota mitjana igual o superior a 3,5 (i menor que 5) en totes les activitats d'avaluació.

D'acord amb els criteris assenyalats anteriorment, si un estudiant no realitza, al menys, el 66% de les pràctiques de les activitats d'evaluació es considerarà com no avaluable d'aquesta assignatura.

 

SEGONA MATRÍCULA:

En cas de segona matrícula, l'alumnat podrà realitzar una única prova de síntesi que consistirà en un test teòric i un exercici pràctic. La qualificació de lassignatura correspondrà a la qualificació de la prova de síntesi. L'estudiant que vol fer aquesta prova de síntesi ho ha de comunicar per escrit al coordinador de l'assignatura.

 

PLAGI:

Encas que l’estudiant realitzi qualsevol irregularitat que pugui conduir a una variació significativa de la qualificació d’un acte d’avaluació, es qualificarà amb 0 aquest acte d’avaluació, amb independència del procés disciplinari que s’hi pugui instruir. En cas que es produeixin diverses irregularitats en els actes d’avaluació d’una mateixa assignatura, la qualificació final d’aquesta assignatura serà 0. 

 

Aquesta assignatura no preveu el sistema d'avaluació única.


Bibliografia

Alcalde, Ignasi. (2015). Visualización de la información. De los datos al conocimiento. Editorial UOC.

Bounegru, Liliana; Gary, Jonathan (Eds.). (2020). The Data Journalism Handbook II. Towards a Critical Data Practice. European Journalism Centre and Google News Initiative. https://datajournalism.com/read/handbook/two

Bradshaw, Paul. (2017). Scraping for Journalists. How to grab information from hundreds of sources, put it in data you can interrogate - and still hit deadlines (2nd edition). Leanpub

Bradshaw, Paul. (2019). Finding Stories in Spreadsheets. Recipes for interviewing data - and getting answers. Leanpub

Bradshaw, Paul., Maseda, Bárbara. (2015). Periodismo de datos: Un golpe rápido. Cómo entrar, obtener los datos, escabullirse con la noticia… ¡Y asegurarse de que nadie salga herido! Leanpub.

Cairo, Alberto. (2016). The Truthful Art: Data, charts, and maps for communication. New Riders.

Cairo, Alberto. (2017). ¿Visualización de datos: una imagen puede valer más que mil números, pero no siempre más que mil palabras. El profesional de la información, 26(6), 1025-1028.

Carlberg, Conrad. (2011). Análisis estadístico con Excel. Anaya.

CARTO (2018). The Top Trends in Data Visualization for 2018. Medium. https://medium.com/@carto/the-top-trends-in-data-visualization-for-2018-54911e875375

Charte Ojeda, Francisco (2016). Excel 2016. Anaya.

Ferrer-Sapena, Antonia; Sánchez-Pérez, Enrique. (2013). Open data, big data: ¿Hacia dónde nos dirigimos? Anuario ThinkEPI, 7, 150-156.

Fernández-Rovira C., Giraldo-Luque S. (2021). La felicidad privatizada. Monopolios de la información, control social y ficción democrática en el siglo XXI. Editorial UOC.

Fernández-Rovira C., Giraldo-Luque S. (Eds.). Predictive Technology in Social Media. CRC Press. Taylor & Francis Group. 

Fuchs, Christian. (2017). “Dallas Smythe Today – The Audience Commodity, the Digital Labour debate, Marxist Political Economy and Critical Theory. Prolegomena to a Digital Labour Theory of Value”. En: Fuchs, C., Mosco, V. (Eds.). Marx and the Political Economy of the Media. Haymarket Books. pp. 522-599.

Giraldo-Luque Santiago; Fernández-Rovira Cristina (2021) Economy of Attention: Definition and Challenges for the Twenty-First Century. En: Park S.H., Gonzalez-Perez M.A., Floriani D.E. (Eds.). The Palgrave Handbook of Corporate Sustainability in the Digital Era. Palgrave Macmillan. pp. 283-305.

Greene, Derek. (2014). Practical Social Network Analysis With Gephi. Practical Social Network Analysis With Gephi · Derek Greene

Greene, Derek; Cunningham, Pàdraig (2013). Producing a Unified Graph Representation from Multiple Social Network Views. Proc. ACM Web Science’13

Kauffmann, Erick; Peral, Jesús; Gil, David; Ferrández, Antonio; Sellers, Ricardo; Mora Higinio (2020). A framework for big data analytics in commercial social networks: A case study on sentiment analysis and fake review detection for marketing decision-making, Industrial Marketing Management, 90, 523-537.

Mayer-Schönberger, Viktor; Cukier, Kenneth (2013). Bigdata. La revolución de los datos masivos. Turner.

O’Neil, Cathy. (2017). Armas de destrucción matemática. Cómo el Big Data aumenta la desigualdad y amenaza la democracia. Capitan Swing.

Patino, Bruno (2020). La civilización de la memoria de pez. Pequeño tratado sobre el mercado de la atención. Alianza.

Tascón, Mario (2013). Introducción. Big Data. Pasado, presente, futuro. Telos: Cuadernos de comunicación e innovación, 95, 47-50.

Turing, Alan. (1974). ¿Puede pensar una máquina? Universidad de Valencia.


Programari

A l'tractar-se d'una assignatura completament pràctica el programari requerit és l'habitual per a la realització de les tasques de captura, tractament i anàlisi d'informació en diferents formats.

En concret, es requereixen de les següents eines:

Programari d'edició de textos: Word o similar

Programari d'anàlisi de dades: Excel or similar

Programari de visualització de dades: Flourish - Datawrapper - Gephi


Llista d'idiomes

Nom Grup Idioma Semestre Torn
(PLAB) Pràctiques de laboratori 61 Espanyol segon quadrimestre tarda
(PLAB) Pràctiques de laboratori 62 Espanyol segon quadrimestre tarda
(TE) Teoria 6 Espanyol segon quadrimestre tarda