Titulación | Tipo | Curso |
---|---|---|
2503740 Matemática Computacional y Analítica de Datos | OB | 3 |
Puede consultar esta información al final del documento.
Haber cursado las asignaturas de la materia 7: Inteligencia Artificial y Aprendizaje Computacional, y las asignaturas de Modelización e Inferencia (2º), Análisis Complejo de Datos (2º), y Teoría de la Información (3º).
Esta asignatura tiene como objetivo dar una introducción práctica a los modelos de redes neuronales y el aprendizaje profundo.
Los estudiantes consolidarán y ampliarán sus antecedentes teóricos, construyendo sobre asignaturas anteriores sobre aprendizaje automático y complementando el conocimiento previo con nuevos conceptos sobre el diseño de redes neuronales, las herramientas y sistemas de aprendizaje profundo, y las técnicas de aprendizaje para dichos modelos.
Los estudiantes deben terminar esta asignatura, teniendo un amplio conocimiento de las diferentes arquitecturas de redes neuronales y sus escenarios de uso típicos, y una capacidad demostrada para elegir críticamente la arquitectura correcta y los mecanismos de aprendizaje adecuados para cada tarea.
Finalmente, los estudiantes recibirán capacitación práctica y adquirirán experiencia en el uso de los sistemas actuales de aprendizaje profundo para resolver tareas concretas.
Título | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|
Tipo: Dirigidas | |||
Clase de Practicas | 14 | 0,56 | |
Clase de Teoría | 20 | 0,8 | |
Sesiones de proyecto | 16 | 0,64 | |
Tipo: Supervisadas | |||
Tutorias | 5 | 0,2 | |
Tipo: Autónomas | |||
Dedicación a las practicas | 29 | 1,16 | |
Desarrollo del proyecto | 16 | 0,64 | |
Lectura y estudio de material | 45 | 1,8 |
El diseño de redes neuronales se guía por los tipos de problemas que pretende resolver. A lo largo de esta asignatura será esa tipología de problemas la que proporcionará la motivación de cada apartado y orientará la organización de los contenidos.
Habrá tres tipos de sesiones:
Clases de teoría: El objetivo de estas sesiones es que el profesor explique los antecedentes teóricos de la asignatura. Para cada uno de los temas estudiados se explica la teoría y formulación matemática, así como las correspondientes soluciones algorítmicas.
Sesiones de laboratorio: Las sesiones de laboratorio tienen como objetivo facilitar la interacción, el trabajo colaborativo y reforzar la comprensión de los temas vistos en las clases de teoría mediante la elaboración de casos prácticos que requieren el diseño de soluciones utilizando los métodos estudiados en las clases de teoría. La resolución de problemas se iniciará en la clase y se complementará con una serie de problemas semanales para trabajar en casa.
Sesiones de proyecto: hacia finales de curso se dedicarán las últimas sesiones a realizar el seguimiento de un proyecto. Este proyecto consistirá en una tarea que deberá resolverse con las herramientas y conceptos trabajados a lo largo del curso.
Toda la información de la asignatura y los documentos relacionados que necesiten los alumnos estarán disponibles en el campus virtual (cv.uab.cat).
Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.
Título | Peso | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|---|
Entregables de problemas | 10 | 0 | 0 | CM22, CM24 |
Evaluación del proyecto | 45 | 1 | 0,04 | CM22, CM23, CM24, SM19 |
Examenes | 45 | 4 | 0,16 | KM20, KM21 |
Para evaluar el nivel de aprendizaje del alumno, se establece una fórmula que combina la adquisición de conocimientos teóricos y prácticos, y la capacidad de resolución de problemas.
La nota final se calcula ponderada de la siguiente forma y según las diferentes actividades que se llevan a cabo:
Nota final = 0,45 * Nota de teoría + 0,1 * Nota de problemas + 0,45 * Evaluación práctica
Se aplicará esta fórmula siempre que la nota de teoría sea mayor que 4. No existe ninguna restricción sobre la nota de problemas ni sobre la nota de proyectos. Si haciendo el cálculo de la fórmula sale >= 5, pero las notas de teoría no alcanzan el mínimo exigido, entonces la nota que se pondrá en el expediente será la más pequeña entre el resultado de aplicar la fórmula anterior y 4,5.
La nota de teoría tiene como objetivo evaluar las habilidades individuales del alumno en cuanto al contenido teórico de la asignatura, esto se realiza de forma continua durante el curso a través de dos exámenes parciales. La calificación general de teoría es el promedio de las calificaciones de los dos exámenes parciales.
El examen parcial # 1 se realiza a mitad de semestre y sirve para eliminar parte de la materia si se aprueba. El examen parcial # 2 se realiza al final del semestre y sirve para eliminar parte de la materia si se aprueba.
Estos exámenes pretenden realizar una evaluación individualizada de las capacidades de cada estudiante para resolver problemas utilizando las técnicas explicadas en clase, así como evaluar el nivel de conceptualización que el estudiante ha hecho de las técnicas vistas. Si haciendo el cálculo de la fórmula sale una nota de teoría < 5 será necesario realizar el examen de recuperación.
Examen de recuperación. En caso de que la nota de teoría no llegue al aprobado, los estudiantes tendrán que presentarse a un examen de recuperación donde se evaluará de todos los contenidos de la asignatura realizados a lo largo del curso. En caso de aprobar, la nota máxima del examen de recuperación será 5.
Nota de Problemas
El objetivo de los problemas es que el alumno se entrene de forma continuada con los contenidos de la asignatura y se familiarice con la aplicación de los conceptos teóricos. Como prueba de este trabajo se solicita la entrega de un portafolio con las soluciones a los problemas semanales. Para obtener una nota de problemas se requiere que el alumno entregue un mínimo del 70% de los problemas. En caso contrario, la calificación de problemas será 0.
La parte de formación más práctica de esta asignatura se basa en el desarrollo de un proyecto que se realizará a finales de curso. Tiene un peso esencial en la nota global de la asignatura y pretende que el estudiante se enfrente al problema de diseñar una solución a un reto que se plantea de forma contextualizada y que, por tanto, requiere el diseño de una solución integral , desde la preparación de los datos hasta el diseño y entrenamiento de un modelo neuronal. Además, el estudiante debe demostrar sus habilidades para trabajar en equipo y presentar convincentemente los resultados.
Los proyectos se evalúa a través de su entregable, y una presentación oral que realizarán los estudiantes en clase. La nota se calcula de la siguiente forma:
Nota Proyecto = 0.6 * Nota Entregables + 0.4 * Nota Presentación
En caso de no superar el proyecto se permitirá la recuperación a nivel de grupo o individual con la restricción de que la nota máxima del proyecto será un 5 (aprobado). En la recuperación del proyecto las notas obtenidas en la presentación y autoevaluación no se considerarán.
Esta asignatura no contempla el sistema de evaluación única.
Sin perjuicio de otras medidas disciplinarias que se estimen oportunas, y de acuerdo con la normativa académica vigente, las actividades de evaluación serán suspendidas con cero (0) siempre que un alumno cometa alguna irregularidad académica que pueda alterar dicha evaluación (por ejemplo,plagio, copia, cesión de copia, ...). Las actividades de evaluación calificadas de esta forma y por este procedimiento no serán recuperables. Si se necesita aprobar alguna de estas actividades de evaluación para aprobar la asignatura, esta asignatura se suspenderá directamente, sin posibilidad de recuperarla en el mismo curso.
En caso de que el alumno no haga ninguna entrega de problemas, no participe en ninguna evaluación práctica y en ningún de los examenes, la nota correspondiente será "no evaluable". En cualquier otro caso, los "no presentados" computan como un 0 para el cálculo del promedio ponderado.
Para obtener matrícula de honor, la calificación final debe ser igual o superior a 9 puntos. Debido a que el número de estudiantes con esta distinción no puede exceder el 5% del número total de estudiantes inscritos en el curso, se le otorga a quien tenga la calificación final más alta. En caso de empate, se tendrán en cuenta los resultados de los exámenes parciales.
Libros:
libros online:
Para las actividades prácticas del curso usaremos Python (NumPy, MatPlotLib, SciKit Learn) y PyTorch
Nombre | Grupo | Idioma | Semestre | Turno |
---|---|---|---|---|
(PLAB) Prácticas de laboratorio | 1 | No definido | segundo cuatrimestre | manaña-mixto |
(TE) Teoría | 1 | Catalán | segundo cuatrimestre | manaña-mixto |