Titulación | Tipo | Curso |
---|---|---|
2503740 Matemática Computacional y Analítica de Datos | FB | 1 |
Puede consultar esta información al final del documento.
Aunque no hay prerrequisitos oficiales es recomendable que los estudiantes tengan consolidados los
conocimientos propios del Cálculo que se imparten en Bachillerato: límites, continuidad y derivabilidad de funciones
reales de una variable real, nociones de cálculo integral y de trigonometría.
Así como la representación gráfica de funciones relativamente sencillas de una variable.
El requisito más importante es, sin embargo, una gran curiosidad por entender y profundizar en los conceptos que
estudiarán.
Resolver los problemas matemáticos que se pueden plantear en Matemática Computacional y analítica de datos. Entender el concepto de sucesiones y el cálculo de límites. Conocer y trabajar de manera intuitiva, geométrica y formal las nociones de límite, continuidad, derivada e integral. Entender y saber hacer desarrollos de Taylor de funciones de una variable real. Adquirir nociones básicas de series numéricas y de potencias. Conocer la construcción de la integral, el cálculo de integrales y su aplicación a la resolución de problemas donde sea necesario el planteamiento de integrales. Integrales impropias.
1. Sucesiones de números reales.
-Límite de una sucesión y propiedades algebraicas.
-Sucesiones monótonas.
-Puntos de acumulación.
-Sucesiones parciales.
-Teorema de Bolzano-Weierstrass.
-Sucesiones de Cauchy.
-Cálculo de límites.
2. Funciones reales.
-Dominio de una función.
-Funciones elementales.
-Límite de una función en un punto.
-Límites laterales.
-Propiedades de los límites. Asíntotas. Cálculo de límites de funciones.
-Continuidad de una función.
-Teorema de Bolzano. Teorema del valor medio y Teorema de Weierstrass.
3.Derivación.
-Derivada de una función en un punto.
-Cálculo de algunas derivadas.
-Recta tangente.
-Regla de la Cadena. Derivada de la función inversa. Derivación logarítmica.
-Extremos absolutos y relativos de una función.
-Teorema de Rolle.
-Teorema del valor medio.
-Regla del Hôpital.
-Infinitésimos. Cálculo de límites con infinitésimos.
-Método de Newton para la resolución numérica de funciones.
4. Aproximación por polinomios de Taylor.
-Orden de contacto entre funciones.
-Polinomio de Taylor. Propiedades. Fórmula de Taylor. Residuo de Taylor.Cálculos aproximados.
-Aplicación al cálculo de límites.
-Estudio local de funciones.
5. Integración.
-Primitivas de una función.
-Integrales inmediatas.
-Integrales por cambio de variable.
-Integrales por partes.
-Integración de funciones racionales.
-Integración de funciones irracionales.
-Teorema fundamental del cálculo.
-Aplicaciones de la integración: cálculo de áreas planas, cálculo de la longitud de una curva, cálculo de áreas y volúmenes de revolución.
-Integrales impropias.Criterios de convergencia. Convergencia absoluta.
6. Series numéricas y de potencias.
-Series numéricas.
-Condición necesaria de convergencia.
-Criterios de: comparación, cociente, raíz, integral.
-Series alternadas.
-Convergencia absoluta.
-Series de potencias. Radio de convergencia. Derivación e integración de series de potencias.
Título | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|
Tipo: Dirigidas | |||
Clases de teoria | 27 | 1,08 | CM01, CM03, CM04, KM01, SM01, SM02, CM01 |
Sesiones de prácticas y problemas | 22 | 0,88 | CM01, CM03, CM04, KM01, SM01, SM02, CM01 |
Tipo: Supervisadas | |||
tutorias | 16 | 0,64 | CM01, CM03, CM04, KM01, SM01, SM02, CM01 |
Tipo: Autónomas | |||
Preparación exámenes | 15 | 0,6 | CM01, CM03, CM04, KM01, SM01, CM01 |
Trabajo personal | 64 | 2,56 | CM01, CM03, CM04, KM01, SM01, CM01 |
Las clases de teoría, problemas y prácticas no son distinguibles, por lo que iremos alternándolas según necesidades del temario y de los estudiantes.
En principio, el profesor de teoría dará las ideas principales sobre los diversos temas. El alumno deberá resolver los problemas propuestos.
Los profesores de problemas y de prácticas resolverán las dudas que se les planteen y propondrán métodos de resolución tanto mediante ordenadores como analíticos.
A lo largo del semestre el alumno deberá resolver y entregar problemas. Estas entregas formarán parte de la evaluación continuada de la asignatura.
Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.
Título | Peso | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|---|
Primer examen parcial | 40% | 2 | 0,08 | CM01, CM03, CM04, KM01, SM01, SM02 |
Primera Entrega | 15% | 1 | 0,04 | CM01, CM03, CM04, KM01, SM01, SM02 |
Segundo examen parcial | 40% | 2 | 0,08 | CM01, CM03, CM04, KM01, SM01, SM02 |
entrega | 5% | 1 | 0,04 | CM01, CM03, CM04, KM01, SM01, SM02 |
Traducció del català realitzada per "Google Translate"
Habrá una prueba/entrega evaluable de la parte práctica del curso, con ordenador, que valdrá el 15% de la nota final. Esta parte de la nota no será recuperable.
La entrega de ejercicios resueltos, a medida que el profesor lo voy indicando, complementa (5%) la evaluación de curso. Esa parte tampoco será recuperable.
Habrá un examen (Primer Parcial = P_1) a medio semestre en el que se evaluará el trabajo realizado hasta ese momento. La nota de este examen aportará el 40% de la calificación final. Todos los estudiantes que realicen este examen ya no podrán ser calificados como NO EVALUABLE. Aquel estudiante que no haya realizado este examen constará como NO EVALUABLE a efectos académicos y no tendrá derecho a recuperarlo (excepto por causa debidamente justificada, en cuyo caso se permitirá realizar el examen de recuperación).
Al final del semestre habrá un segundo examen parcial (que se llama P_2) en el que se evaluarán los conocimientos de los temas que no se hayan evaluado en el primer parcial. La nota de este examen aportará otro 40% de la calificación final. Aquel estudiante que no haya realizado este examen no tendrá derecho a recuperarlo (excepto por causa debidamente justificada, en cuyo caso se permitirá realizar el examen de recuperación).
Si la media de las notas (sobre 10) de los dos parciales (P_1+P_2)/2 es inferior a 3,5 el alumno debe ir al examen de recuperación, que es un examen global de toda la asignatura . Si la media M=(P_1+P_2)/2 es superior o igual a 3,5, entonces la nota final es NF=0,8 M+ 0,15 P + 0,05 Ll, donde P es la parte práctica del curso (sobre 10) y Ll es la nota de las entregas(sobre 10). Si NF es superior a 5, el alumno ha aprobado y tiene NF como nota final. Si no es así, el alumno debe ir al examen de recuperación y en este caso la nota final será 0,8 R + 0,15 S + 0,05 Ll, donde R es la nota del examen de recuperación (sobre 10).
Podrá obtener la calificación de Matrícula de Honor el 5% del alumnado. Necesariamente tendrán que tener una nota igual o superior a 9. La decisión final sobre la calificación de MH la tomará el profesorado.
En los exámenes parciales y en el de recuperación, no se permitirá utilizar calculadora.
Para cada actividad de evaluación, se indicará un lugar, fecha y hora de revisión en la que el estudiante podrá revisar la actividad con el profesorado. En este contexto, se podrán realizar reclamaciones sobre la nota de la actividad, que serán evaluadas por el profesorado responsable de la asignatura. Si el estudiante no se presenta a esta revisión, no se revisará posteriormente esta actividad. Las fechas de las entregas de problemas y de los exámenes parciales se publicarán en el Campus Virtual (CV) y pueden estar sujetas a posibles cambios de programación por motivos de adaptación a posibles incidencias; siempre se informará al CV sobre estos cambios puesto que se entiende que el CV es el mecanismo habitual de intercambio de información entre profesor y estudiantes.
Sin perjuicio de otras medidas disciplinarias que se consideren oportunas y de acuerdo con la normativa académica vigente, las irregularidades cometidas por un estudiante que puedan conducir a una variación de la calificación se calificarán con un cero (0). Por ejemplo,plagiar, copiar, dejar copiar, tener dispositivos de comunicación (como teléfonos móviles, smart watches, etc.) en una actividad de evaluación, implicará suspender esta actividad de evaluación con un cero (0). Las actividades de evaluación calificadas de esta forma y por este procedimiento no serán recuperables. Si es necesario superar cualquiera de estas actividades de evaluación para aprobar la asignatura, esta asignatura quedará suspendida directamente, sin oportunidad de recuperarla en el mismo curso. La nota numérica del expediente será el valor menor entre 3.0 y la media ponderada de las notas en caso de que el estudiante haya cometido irregularidades en un acto de evaluación (y por tanto no será posible el aprobado por compensación).
1.S.L. Salas, E. Hille. 'Calculus' Vol. 1, Ed. Reverté, 2002.
2.Bartle, R.G., Shebert, D.R. (1996) Introducci ́on al An ́alisis Matem ́atico de una variable. 2a ed. Limusa. ISBN: 978-968-18-5191-0.
3.Ortega Aramburu, J.M. (2002). Introducci ́o a l’An`alisi Matem`atica. 2a ed. Manuals de la Universitat Aut`onoma de Barcelona.
4. Zill, D.G., Wright, W.S. (2011). Cálculo de una variable. 4a edició. McGrawHill. ISBN: 978-607-15-0501-9.
SageMath
Nombre | Grupo | Idioma | Semestre | Turno |
---|---|---|---|---|
(PLAB) Prácticas de laboratorio | 1 | Catalán | primer cuatrimestre | manaña-mixto |
(SEM) Seminarios | 1 | Catalán | primer cuatrimestre | manaña-mixto |
(TE) Teoría | 1 | Catalán | primer cuatrimestre | manaña-mixto |