Logo UAB

Redes Neuronales y Aprendizaje Profundo

Código: 104362 Créditos ECTS: 6
2024/2025
Titulación Tipo Curso
2503758 Ingeniería de Datos OB 3

Contacto

Nombre:
Ramon Baldrich Caselles
Correo electrónico:
ramon.baldrich@uab.cat

Equipo docente

Carlos Boned Riera

Idiomas de los grupos

Puede consultar esta información al final del documento.


Prerrequisitos

Es fundamental haber adquirido una buena base matemática así como tener un buen nivel de programación, prinicpalment en Python. Es fundamental haber cursado la asignatura de Aprendizaje Computacional de primer semestre. Algunos de los conceptos desarrollados en esta asignatura son la base del contenido y desarrollo de las Redes Neuronales


Objetivos y contextualización

Objetivos y contextualización

Esta asignatura pretende dar una introducción práctica a los modelos de redes neuronales y el aprendizaje profundo.
Los estudiantes consolidarán y ampliarán su formación teórica, tomando como base el conocimiento adquirido en las materias anteriores relacionadas con el aprendizaje automático., Completando su perfil en este ámbito. El objetivo de la asignatura es acabar teniendo un conocimiento amplio de los conceptos, técnicas y estructuras típicas de redes neurales, así como ser capaces de entender y aplicar la metodología particular de estas técnicas a casos prácticos reales, y finalmente desarrollar la capacidad de escoger los mecanismos y estructuras más adecuadas para cada caso particular de aplicación.

Competencias

Hacer un uso eficaz de los recursos bibliográficos y recursos electrónicos para obtener información.
Resolver problemas relacionados con el análisis de grandes volúmenes de datos mediante el diseño de inteligentes sistemas y aprendizaje computacional.
Los estudiantes deben ser capaces de aplicar sus conocimientos a su trabajo o vocación de forma profesional y deberán poder establecer argumentos y habilidades de resolución de problemas.
Los estudiantes deben ser capaces de comunicar información, ideas, problemas y soluciones, tanto para públicos especializados como no especializados.
Utilizando criterios de calidad, valorar críticamente el propio trabajo realizado.
Trabajar de forma cooperativa en un contexto multidisciplinar asumiendo y respetando el papel de los diferentes miembros del equipo.

Competencias

  • Analizar los datos de forma eficiente para el desarrollo de sistemas inteligentes con capacidad de aprendizaje autónomo y/o para la minería de datos.
  • Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  • Trabajar cooperativamente, en entornos complejos o inciertos y con recursos limitados, en un contexto multidisciplinar, asumiendo y respetando el rol de los diferentes miembros del equipo.

Resultados de aprendizaje

  1. Diseñar e implementar una estrategia integrada de técnicas estadísticas y de inteligencia artificial para el desarrollo de sistemas descriptivos y predictivos.
  2. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  3. Trabajar cooperativamente, en entornos complejos o inciertos y con recursos limitados, en un contexto multidisciplinar, asumiendo y respetando el rol de los diferentes miembros del equipo.

Contenido

1 Introducción y bases de las Redes neurales

-regresión logística

-perceptrón

-función de activación

-Descenso del gradiente

-MLP

-backpropagation



2 Aspectos prácticos de las Redes Neuronales

- overfitting

- Regularización

- vagos

- Normalización de entrada

- Vanishing / Exploding gradientes

- Inicialización de pesos

- Comprobación del gradiente



3 Redes convolucionales

- Visión por Computador

- Qué es la convolución

- Padding, stride Convolution

- Algebra los filtros

- pooling layers

- regresion softmax

- primeros redes: AlexNet, VGG



4 Casos de estudio en CNN: Clasificación

- inception

- redes residuales

- Networ in network: convolución de 1x1



5 Aspectos prácticos de las Redes Neuronales II

- Ajuste de hiperparametres

- Normalización de activaciones, batch norm

- Fecha Augmentation

- Transfer Learning



6 CNN: detección de objetos

- detección de objetos vs clasificación

- predicción de cajas

- métrica: intersección over union

- No max supresión

- Cajas ancla

- Redes Base: Yolo, FasterRCNN



7 Redes sequenciales: Recurrente Neural Networks

- Modelo de redes neurales recurrentes

-backpropagation en el tiempo

- Tipo de RNN

- Modelo de lenguaje y generación de secuencias

- GRU & LSTM

- Word2vec
 

 


Actividades formativas y Metodología

Título Horas ECTS Resultados de aprendizaje
Tipo: Dirigidas      
Contenido teorico 22 0,88 1, 2
Tipo: Supervisadas      
Clases practicas 16 0,64 1, 3
seminarios 10 0,4 1, 2
Tipo: Autónomas      
Preparación y realización de proyectos prácticos 52 2,08 1, 2, 3
estudio 28 1,12 1, 2

Toda la información de la asignatura y los documentos relacionados que los estudiantes necesiten se encontrarán en la página Campus Virtual (http://cv.uab.cat/), el menú de la asignatura Conocimiento, razonamiento e incertidumbre.

Las diferentes actividades que se llevarán a cabo en la asignatura se organizan de la siguiente manera:

 Clases de teoría

Se expondrán los principales conceptos y algoritmos de cada tema de teoría. Estos temas suponen el punto de partida en el trabajo de la asignatura.

Seminarios de problemas

Serán clases con grupos reducidos de estudiantes, que faciliten la interacción, o de carácter individual, según los casos. En estas clases se plantearán casos prácticos que requieran el diseño de una solución en la que se utilicen los métodos vistos en las clases de teoría. Es imposible seguir las clases de problemas si no se siguen los contenidos de las clases de teoría. El resultado de estas sesiones es la resolución de los problemas que se deberán entregar obligatoriamente de forma semanal. El mecanismo específico para la entrega, así como el mecanismo d'avaluación, se indicará en la página web de la asignatura (espacio Caronte).

Prácticas de laboratorio

Los grupos de trabajo estarán formados por grupos de 3-4 alumnos y deberán formar la segunda semana del curso. Estos grupos de trabajo se deberán mantener hasta el final del curso y deberán auto-gestionar: reparto de roles, planificación del trabajo, asignación de tareas, gestión de los recursos disponibles, conflictos, etc. Aunque el profesor guiará el proceso de aprendizaje, su intervención en la gestión de los grupos será mínima.

Al inicio del curso, sepresentarán los problemas a resolver y los alumnos definirán su propio proyecto. A lo largo del semestre, los alumnos trabajarán en grupos cooperativos y deberán analizar el problema escogido, diseñar e implementar soluciones basadas en diferentes algoritmos de aprendizaje computacional vistos en clase, analizar los resultados obtenidos en cada uno de los métodos y defender su proyecto en público.

Para desarrollar el proyecto, los grupos trabajarán de forma autónoma y las sesiones de prácticas se dedicarán principalmente a resolver dudas con el profesor que hará el seguimiento del estado del proyecto, indicará errores a corregir, propondrá mejoras, etc.

Algunas de las sesiones se marcarán como sesiones de control en las que se deberá entregar alguna parte del proyecto. En estas sesiones los grupos deberán explicar el trabajo hecho y el profesor hará cuestiones a todos los miembros del grupo para valorar el trabajo realizado. La asistencia a estas sesiones es obligatoria.

En la última sesión de cada uno de los proyectos de prácticas, los grupos harán una presentación del proyecto donde explicarán el proyecto desarrollado, la solución adoptada y los resultados obtenidos. En esta presentación cada miembro del grupo deberá hacer una parte de la presentación.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.


Evaluación

Actividades de evaluación continuada

Título Peso Horas ECTS Resultados de aprendizaje
Defensa de proyecto 20% 5 0,2 1, 2, 3
Portfolio problemas 10 5 0,2 1, 2
Proyecto en grupo 40% 5 0,2 1, 2, 3
Pruebas de concepto 30% 7 0,28 1, 2

Actividades e instrumentos de evaluación:

Para evaluar la consecución de los conocimientos y competencias asociados a la asignatura se establece un mecanismo de evaluación que combina la asimilación de los conocimientos, la capacidad de resolución de problemas, y de forma significativa, la capacidad de generar soluciones computacionales a problemas complejos, tanto grupal como individualmente.

Con este objetivo se divide la evaluación en tres partes:

− Evaluación de contenidos

La nota final de contenidos se calculará a partir de varios exámenes parciales:

Nota Contenidos = 1/N * Prueba_i

El número de pruebas puede variar y se establecerán en el inicio de curso. Para poder tener una nota de contenidos será necesario que las notas de cada una de las pruebas sea superior a 4.

Las pruebas parciales se realizarán durante el curso y eminenmente serán de contenido conceptual donde responder a diferentes preguntas sobre el contenido desarrollado en las sesiones 'teóricas'.

Estas pruebas pretenden ser una evaluación individualizada del estudiante con sus capacidades de entender las técnicas explicadas en clase así como evaluar el nivel de conceptualización que el estudiante ha hecho de las técnicas vistas.

Tests de recuperación. En caso de que la nota de contenidos no llegue al nivel adecuado en alguna de las pruebas, para obtener una nota final suficiente para considerar la consecución de los conocimientos, los estudiantes se pueden presentar en el examen de la convocatoria de la asignatura y volver a realizar un examen que evalúe los contenidos vistos en la asignatura de la/s parte/s no superada/s.

No existen convalidaciones en caso de que se hubiera superado la parte teórica en años anteriores.

− Evaluación del trabajo en los seminarios de problemas

Los problemas tienen como objetivo provocar que el estudiante entre en los contenidos de la asignatura de forma continuada ya partir de pequeños problemas que hagan que se familiarice directamente en la aplicación de la teoría. Como evidencia de este trabajo se pide la presentación de un portfolio en el que habrá ido guardando los problemas que habrá ido realizando. Este portfolio tendrá entrega semanal digital. El alumno podrá autoevaluarse continuamente ya que dispondrá de las solcuiones de cada uno de los conjuntos de problemas una vez finalizado el período de entrega. Junto con las horas de tutoría por si aparecen dudas, es suficiente para que cada alumno identifique sus puntos débiles.

− Evaluación del proyecto en grupo.

En las últimas semanas del semestres se realizará un proyecto de mayor alcance que los ejercicios realizados durante el curso en las sesiones de problemas. Este proyecto se evaluará tatn grupal como individualmente. Los mecanismos de evaluación serán código, informe, presentación y seguimiento del proyecto en las sesiones de clase asignadas.


La nota final de la asignatura se obtiene combinando la evaluación de estas 3 actividades de la siguiente forma:

Nota Final = (0.3 * Contenidos) + (0.1 * portafolio de problemas) + (0.6 * Proyecto)
el proyecto tendrá una nota de su defensa y otra de su desarrollo y profundidad de la solución

Condiciones para superar la asignatura:

     La nota final de contenidos debe ser mayor o igual que 4 para poder aprobar la asignatura.
     La nota del proyecto y su defensa debe ser mayor o igual que 6 para poder aprobar la asignatura.

 

En caso de que la nota, aplicando la fórmula del apartado anterior ( "nota final de la asignatura"), fuera superior a 5 pero no se hubiera superado el mínimo exigido en alguna de las partes, la nota final en el expediente será un 4,5.

Se asignarán tantas matrículas de honor como la normativa vigente permita siempre y cuando la nota sea superior a 9,0. La asignación de las matrículas se hará siguiendo el orden de notas.

El alumno se calificará como "No Evaluable" si no tiene ninguna parte evaluada ni de los contenidos teóricos ni de los contenidos prácticos.

Avisos importantes:

  • Las fechas de evaluación continua y entrega de trabajos, así como todo el material docente se publicarán en el campus virtual (http://cv.uab.cat/), en el espacio de esta asignatura iPod estar sujetos a cambios de programación por motivos de adaptación a posibles incidencias. Siempre se informará a cerbero.uab.cat sobre estos cambios ya que se entiende que Caronte convertirá el mecanismo habitual de intercambio de información entre profesor y estudiantes.
  • Para cada actividad de evaluación, se indicará un lugar, fecha y hora de revisión en la que el estudiante podrá revisar la actividad con el profesor. En este contexto, se podrán hacer reclamaciones sobre la notade la actividad, que serán evaluadas por el profesorado responsable de la asignatura. Si el estudiante no se presenta en esta revisión, no se revisará posteriormente esta actividad
  • Sin perjuicio de otras medidas disciplinarias que se estimen oportunas, y de acuerdo con la normativa académica vigente, las irregularidades cometidas por un estudiante que puedan conducir a una variación de la calificación en una actividad evaluable se calificarán con un cero (0) . Las actividades de evaluación calificadas de esta forma y por este procedimiento no serán recuperables. Si es necesario superar cualquiera de estas actividdes de evaluación para aprobar la asignatura, esta asignatura quedará suspendida directamente, sin oportunidad de recuperarla en el mismo curso. Estas irregularidades incluyen, entre otros:

    - la copia total o parcial de una práctica, informe, o cualquier otra actividad de evaluación;
    - dejar copiar;
    - presentar un trabajo de grupo no hecho íntegramente por los miembros del grupo (aplicado a todos los miembros, no sólo los que no han trabajado);
    - presentar como propios materiales elaborados por un tercero, aunque sean traducciones o adaptaciones, y en general trabajos con elementos no originales y exclusivos del estudiante;
    - tener dispositivos digitales y / o de comunicación (como teléfonos móviles, smart watches, bolígrafos con cámara, etc.) accesibles durante las pruebas de evaluación teórico-prácticas individuales (exámenes).
    - hablar con compañeros durante las pruebas de evaluación teórico-prácticas individuales (exámenes).
    - observar / mirar las pruebas de evaluación teórico-prácticas (exámenes) de otros compañeros durante la realización de la misma, aunque no se haya procedido a la copia.
    - observar / mirar en la tabla, hojas, pared etc escritos relacionados con la materia durante la realización de las pruebas de evaluación teórico-prácticas (exámenes) aunque no se haya procedido a la copia.
    La nota numérica del expediente será el valor menor entre 3.0 y la media ponderada de las notas en caso de que el estudiante haya cometido irregularidades en un acto de evaluación (y por tanto no será posible el aprobado por compensación). En resumen: copiar, dejar copiar o plagiar (o el intento de) en cualquiera de las actividades de evaluación equivale a un SUSPENSO con nota inferior a 3,5.

 

no habrá evaluación única


Bibliografía

Bibliografia

Web links

Bibliografia bàsica

  •  Deep learning with Python, François Chollet, Manning Publications, 1st Ed., 2017
  • Pattern Recognition and Machine Learning, Christopher Bishop, Springer, 2011
  • Neural Networks for Pattern Recognition, Christopher Bishop, Oxford University Press, 1st ed., 1996

Software

No se usará ningún programmari especial aparte de los habituales en estos estudios.


Lista de idiomas

Nombre Grupo Idioma Semestre Turno
(PAUL) Prácticas de aula 811 Catalán segundo cuatrimestre tarde
(PAUL) Prácticas de aula 812 Catalán segundo cuatrimestre tarde