Degree | Type | Year |
---|---|---|
2502444 Chemistry | FB | 1 |
You can view this information at the end of this document.
There are no prerequisites. Having taken a course on Earth Sciences and Environment in high-school can help to follow the course but it's not a prerequisite.
Contextualitzation
The course constitutes a basic training that develops a cross-cutting vision on Geology taking special emphasis on the aspects with more concomitances with Chemistry. Geochemistry, Crystallography and isotopic dating methods are particularlyrelevant in this context.
Formative objectives
1) To know the main branches of Geology and its various objectives.
2) To know the structure and composition of the Earth and its timeframe.
3) To recognize the main geological materials (minerals and rocks) and to know the concept of crystallinity and the tools that allow its study.
4) To apply the basic principles of thermodynamics to the study of mineral balances.
5) To know the composition of the main fluids of the Earth and their interaction with the rocks.
6) To know the principles of isotopic geochemistry and its main applications.
7) To relate the various natural resources with the corresponding artificial reagents and industrial materials.
8) To know the main geochemical problems of global scope.
0.- INTRODUCTION
Geology, what is this?
Organization of Geology in subdisciplines and affinities with other sciences.
1.- EARTH STRUCTURE AND GLOBAL TECTONIC. SPACE AND TEMPORARY SCALES.
External fluid layers.
The internal structure.
Origin of chemical elements from the Earth and the Cosmos.
Primary and secondary geochemical differentiation
Geochemical classification of the elements
Plate tectonics
Timescales
2.- EARTH CHEMICAL: NATURE OF THE SOLID STATE, MINERALS AND ROCKS
Solid state and crystallinity
Point and spatial symmetry
Properties used for mineral identification
Chemical and structural classification of minerals
Rock classification criteria
3.- STABILITY OF MINERALS: PHASES AND MINERAL EQUILIBRIA.
Thermodynamic basics
Polymorphism and solid solutions
Phase diagrams: construction, reading and applications
Phase balances in the lithosphere (metamorphic equilibria)
Phase balances in the lithosphere (igneous equilibria)
4.- EARTH FLUIDS : MAGMAS, GASES, WATERS, HYDROCARBURS.
Magmas, environments of formation and magmatic differentiation.
Gases, formation and evolution of the atmosphere.
Waters, hydrological and geochemical cycle.
Hydrocarbons, training and evolution.
5.- WATER-ROCK INTERACTION: LOW TEMPERATURE GEOCHEMICAL PROCESSES
Chemical and biochemical meteorization.
Alteration reactions and fluid analysis.
Foundation and diagenesis
Others (ion exchange, dolomitization, laterization and autogenic biomineralization).
6.- ISOTOPIC GEOCHEMISTRY PRINCIPLES AND APPLICATIONS.
Stable isotopes: isotopic fractionation.
Stable isotopes: applications.
Radiogenic isotopes: radioactive processes.
Radiogenic isotopes: radiometric dating, applications.
7.- THE EARTH AS A SOURCE OF MATERIALS AND CHEMICAL PRODUCTS
Industrial rocks
Acid production (H2SO4, HNO3, HCl and H3PO4).
Gas production (NH3, Cl2, H2).
Production and uses of phosphates.
8.-GLOBAL GEOCHEMICAL PROBLEMS.
Air pollution (O3, CO2, smog).
Eutrophication and sewage treatment.
Contamination of soils and water.
Urban waste treatment.
Treatment of radioactive waste.
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
Theoretical sessions | 36 | 1.44 | 3, 4 |
Type: Supervised | |||
Practical sessions | 6 | 0.24 | 2, 3, 4 |
Sessions of problems | 10 | 0.4 | 2, 3, 4 |
Tutoring | 1 | 0.04 | 2, 3, 4 |
Type: Autonomous | |||
Autonomous assimilation of the acquired knowledge in the practices | 9 | 0.36 | 1, 2, 3, 4, 6 |
Preparation and resolution of problems autonomously | 15 | 0.6 | 1, 2, 3, 4, 6 |
Reading and study of the theory | 55 | 2.2 | 1, 3, 4 |
Search for information | 6.5 | 0.26 | 1, 3, 4, 6 |
Theoretical classes
The student acquires the knowledge of the subject by attending the theoretical classes that occasionally complement each other with simple questions and exercises that are presented with the corresponding explanations. This is the aim of active student participation so that the flux of interaction if not unidirectional.
Tutorials
The process of learning and acquiring competencies will be supervised by the teacher through individual and/or group tutoring. Formally a date is assigned for the tutoring but the teacher of the subject will be available to the students to arrange appointments to solve the doubts and follow the evolution of the aforementioned process of learning and competence acquisition.
Sessions of problems
Interspersed with the theoretical classes there are a set of supervised sessions that aim at facing problems related to each of the topics that make up the theoretical classes. Problem sessions combine mathematical skill with critical reasoning.
Practical sessions
These are 3 practical sessions of 2 hours, these are interspersed with the theoretical and problem sessions, they are intended to make the student connect the explanations with the actual geological subdisciplines. Basically these deal with materials at 3 levels: ordering the crystalline matter (notions of point symmetry), mineral recognition and rock recognition. This working approach aims at promoting active learning and developing critical reasoning and analytical and synthesis capacity.
Reading and studying the fundamentals
Notes corresponding to all program topics are available on the Virtual Campus, along with all the presentations that the teachers use in the theory sessions can also be downloaded through the Virtual Campus. The student should spend more of his autonomous working time reading this available materials, along with their notes.
Preparing and solving autonoumously problems
The issues raised in the problem sessions are available on the Virtual Campus prior to inperson activities. It is intended that the student attend the sessions having prepared the issues in order to make the most of the attendance at the problems sessions. In addition, it is intended that the student take some time to conveniently write down the resolution of the problems to promote order and for the teachers could occasionally ask for them to collect evidence for an individual assessment of students.
Autonomous assimilation of acquired learning into practices
It is intended that the student spend time autonomously consolidating the learning achieved with the practices to stimulate the order and also because the teachers could occasionally ask for them to collect evidence for an individual assessment of students.
Search for information
Student-made material and material available through the Virtual Campus can be supplemented through information from alternatives sources: libraries and the Internet for instance. Preparing problems may also require the search for information.
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
1st parcial exam (theory + practice 1) | 34 | 2 | 0.08 | 1, 2, 3, 4, 6 |
1st partial exam (problems) | 11 | 1 | 0.04 | 2, 3, 4, 5 |
2on parcial exam (problems) | 11 | 1 | 0.04 | 2, 3, 4, 5 |
2on partial exam (theory + practice 2 i 3) | 34 | 2 | 0.08 | 1, 2, 3, 4, 6 |
Final exam (2on chance 1st partial exam) | 45 | 1.5 | 0.06 | 1, 2, 3, 4, 6 |
Final exam (2on chance 2nd partial exam) | 45 | 1.5 | 0.06 | 1, 2, 3, 4, 6 |
Single Assessment Exam | 90 | 0 | 0 | 1, 2, 3, 4, 5, 6 |
Single Assessment Exam (reevaluation) | 90 | 0 | 0 | 1, 2, 3, 4, 5, 6 |
Virtual tests | 10 | 2.5 | 0.1 | 1, 2, 3, 4, 6 |
The evaluation of the subject will be based on the continuous evaluation of the knowledge and competences acquisition process, and it will consist of:
- Test for monitoring the acquisition of teaching contents through the Virtual Campu (2 tests will be performed on the dates of completion of the two partial exams).
- A first 3-hour partial exam that includes the evaluation of:
- The theory content of the first part of the subject (definable depending on the programmatic exhibition progress. It usually includes the first two to three issues).
- The contents of the problem sessions delivered in the first part of the subject.
- The contents of the practical sessions carried out in the first part of the subject (depending on the scheduled dates, this will include the first session or the first and second session).
- A second 3-hour partial exam that includes the evaluation of:
- The theory content of the second part of the subject (definable depending on the programmatic exhibition progress. It usually includes the last five issues).
- The contents of the problem sessions delivered in the second part of the subject.
- The contents of the practical sessions carried out in the second part of the subject (depending on the scheduled dates, this will include the second session or the second and third session).
- A reevaluation exam (It will be optional for those who have passed the partial exams) to pass or improve the previously obtained grade. It will consist of twodifferent exams corresponding to the two partial exams, so that the students can take only one or both.
Access to the final exams will only be granted to those students who had previously undertaken the evaluation activities during the course accounting for 2/3 of the final grade.
If a student has been assessed on a maximum of 33% of the tests and chooses to withdraw, the final grade will be NOT ASSESSED.
If any student requests the single evaluation assessment (in the stipulated way and within the dates proposed by the faculty), a 3-hour assessment will be organized to evaluate the following:
- The theory content of the entire subject (definable depending on the programmatic exhibition progress. This part has a weight corresponding to 60% of the final grade.
- The contents of the problem sessions delivered in the entire subject (including oral examinaiton exercices). This part has a weight corresponding to 22% of the final grade.
- The contents of all the practical sessions carried out in the subject. This part has a weight corresponding to 8% of the final grade.
To complete the single evaluation assessment, a single test of the teaching content of the subject will be scheduled through the Virtual Campus. This part has a weight corresponding to 10% of the final grade, and it will not be reevaluated further.
If the final grade does not reach 5, the students will have another opportunity to pass the subject through a reevaluation assessment exam that will be scheduled on the dates set by the degree coordinator.
In addition, evidence of the students’ activity in class will be collected to produce a mark that will be used to slightly modify those cases of students in a certain threshold (fail/pass, pass/good or good/excellent (or outstanding). Attendance and, above all, active participationin class will be accounted for additional merits.
F. Albarède. Geochemistry, An Introduction, Cambridge University Press, Cambridge, UK, 2003. 248pp.
C-J. Allègre and G. Michard. Introduction to Geochemistry, D. Reidel Publishing Company, Dordrecht-Holland, 1974. 142pp.
A. Bauer and B. D. Velde, Geochemistry at the Earth’s Surface, 2014, Berlin, Springer
W. H. Schlesinger and E. Bernhardt, Biogeochemistry : an analysis of global change, 2013, San Diego, Academic Press
P. Vidal. Géochimie. Dunod, Paris, France, 1998. 190pp.
J. V. Walther. Essentials of Geochemistry, Jones and Bartlett Publishers, Sudbury, Massachusetts, USA, 2005. 704pp.
Presentacions molt didàctiques sobre diversos temes de Geologia: http://www.ig.uit.no/webgeology/
Material didàctic sobre grups de simetria puntual: http://www.uab.cat/web/la-divulgacio/grups-puntuals-de-simetria-1345664584325.html
No specific software is required. Mastering basic spreadsheet software (Excel or Origin) to treat and plot data would be useful.
Name | Group | Language | Semester | Turn |
---|---|---|---|---|
(PAUL) Classroom practices | 1 | Catalan | second semester | morning-mixed |
(PAUL) Classroom practices | 2 | Catalan | second semester | morning-mixed |
(PAUL) Classroom practices | 3 | Catalan | second semester | afternoon |
(PAUL) Classroom practices | 4 | Catalan | second semester | afternoon |
(PLAB) Practical laboratories | 1 | Catalan | second semester | morning-mixed |
(PLAB) Practical laboratories | 2 | Catalan | second semester | morning-mixed |
(PLAB) Practical laboratories | 3 | Catalan | second semester | morning-mixed |
(PLAB) Practical laboratories | 4 | Catalan | second semester | morning-mixed |
(PLAB) Practical laboratories | 5 | Catalan | second semester | afternoon |
(PLAB) Practical laboratories | 6 | Catalan | second semester | afternoon |
(PLAB) Practical laboratories | 7 | Catalan | second semester | afternoon |
(TE) Theory | 1 | Catalan | second semester | morning-mixed |
(TE) Theory | 2 | Catalan | second semester | morning-mixed |