Logo UAB

Equacions Diferencials i Càlcul Vectorial

Codi: 102425 Crèdits: 6
2024/2025
Titulació Tipus Curs
2500897 Enginyeria Química FB 2

Professor/a de contacte

Nom:
Laura Prat Baiget
Correu electrònic:
laura.prat@uab.cat

Equip docent

Francisco Javier Mora Gine

Idiomes dels grups

Podeu consultar aquesta informació al final del document.


Prerequisits

L'assignatura no té prerequisits oficials, però es presuposa que l'alumne ha cursat i aprovat les Matemàtiques de primer curs. És indispensable saber derivar i integrar en una variable.


Objectius

És una assignatura bàsica on s'introdueixen dues de les eines matemàtiques més importants per a la modelització i resolució de problemes reals que apareixen en les enginyeries: les equacions diferencials i l'anàlisi vectorial.

Es pretén que l'alumne

  1. sigui capaç d'utilitzar els mètodes analítics elementals per obtenir solucions d'equacions diferencials .
  2. sàpiga diferenciar les equacions diferencials que es poden resoldre amb mètodes analítics de les que requereixen mètodes numèrics.
  3. pugui extreure informació qualitativa de les solucions d'una equació diferencial de primer ordre a partir del camp de direccions.
  4. entengui el paper de les equacions diferencials en la modelització matemàtica de problemes reals i sigui capaç de plantejar aquest tipus de models en situacions senzilles.
  5. assoleixi destresa en el maneig de les funcions de diverses variables i en el càlcul vectorial.
  6. sàpiga identificar corbes i superfícies a l'espai i relacionar-les amb les equacions que les descriuen.
  7. entengui el significat geomètric dels conceptes bàsics d'un camp vectorial.
  8. aprengui a utilitzar les eines del càlcul vectorial per identificar i calcular magnituds físiques.
  9. entengui i sàpiga utilitzar els teoremes de  l'anàlisi vectorial i conegui el seu paper en la formulació d'algunes teories físiques.

Competències

  • Aplicar coneixements rellevants de les ciències bàsiques, com són les matemàtiques, la química, la física i la biologia, i també principis d'economia, bioquímica, estadística i ciència de materials, per comprendre, descriure i resoldre problemes típics de l'enginyeria química.
  • Hàbits de pensament
  • Hàbits de treball personal
  • Treball en equip

Resultats d'aprenentatge

  1. Aplicar a la resolució de problemes els fonaments i els conceptes bàsics de l'àlgebra.
  2. Aplicar els mètodes de resolució d'equacions diferencials per a l'anàlisi de fenòmens deterministes.
  3. Aplicar, a la descripció i al càlcul de magnituds, els mètodes i els conceptes bàsics del càlcul diferencial i integral en una variable.
  4. Avaluar de manera crítica el treball dut a terme.
  5. Desenvolupar el pensament científic.
  6. Desenvolupar estratègies d'aprenentatge autònom.
  7. Desenvolupar la capacitat d'anàlisi, síntesi i prospectiva.
  8. Desenvolupar un pensament i un raonament crítics
  9. Gestionar el temps i els recursos disponibles. Treballar de manera organitzada.
  10. Identificar, analitzar i calcular magnituds en l'àrea de l'enginyeria utilitzant eines de càlcul en diverses variables.
  11. Identificar, descriure i aplicar conceptes bàsics de matemàtiques i estadística.
  12. Treballar cooperativament.
  13. Treballar de manera autònoma.

Continguts

1. Funcions vectorials. Corbes a l'espai. Vector tangent i normal.

2. Funcions de diverses variables. Corbes i superfícies de nivell. Derivades parcials. Gradients i derivades direccionals. Regla de la cadena. Rectes i plans tangents. Valors màxims i mínims.

3. Integració múltiple. Integrals dobles sobre dominis elementals. Integrals iterades. Integrals triples. Aplicacions de les integrals dobles i triples. Canvi de variables.

4. Integrals de línia i integrals de superfície. Camps vectorials. circulació i flux. Rotacional i divergència. Teorema de Green. Teorema de la divergència.


Activitats formatives i Metodologia

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classe de Teoria 30 1,2 2, 10
Classe de problemes 15 0,6 2, 6, 10
Tipus: Supervisades      
Seminaris 5 0,2 2, 6, 10
Tipus: Autònomes      
Estudi 30 1,2 2, 6, 10
Resolució de problemes 64,5 2,58 2, 6, 10

En el procés d'aprenentatge de la matèria és fonamental el treball de l'alumne, qui en tot moment disposarà de l'ajut del professor.

Les hores presencials es distribueixen en:

Classes de Teoria: El professor introdueix els conceptes bàsics corresponents a la matèria de l'assignatura mostrant exemples de la seva aplicació. L'alumne haurà de complementar les explicacions dels professors amb l'estudi personal.

Classes de Problemes: Es treballa la comprensió i aplicació dels conceptes i eines introduits a teoria, amb la realització d'exercicis. L'alumne disposarà de llistes de problemes, una part dels quals es resoldran a les classes de problemes. La resta els haurà de resoldre l'alumne com a part del seu treball autònom.

Seminaris: S'aprofundeix en la comprensió de la matèria amb el treball dels alumnes en grup sobre problemes pràctics de l'assignatura. En algunes sessions de seminari es podran fer pràctiques amb ordinador.

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Avaluació

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Avaluació dels seminaris 20% 1,5 0,06 1, 3, 2, 4, 6, 10, 9, 13, 12
Examen parcial de teoria i/o problemes 40% 2 0,08 1, 3, 2, 7, 8, 5, 10, 11
Examen parcial de teoria i/o problemes 40% 2 0,08 1, 3, 2, 7, 8, 5, 10, 11

L'avaluació continuada de l'assignatura  es farà a partir de tres qualificacions:

a) Dues proves escrites individuals de teoria i/o problemes. El primer parcial té una qualificació P1. El segon parcial té una qualificació P2. Les qualificacions P1 i P2 són sobre 10.

b) Una nota dels Seminaris. Amb una qualificació S (sobre 10). 

Les proves b)  són  obligatòries i no recuperables. 

Si s'han fet els dos examens parcials, es genera una qualificació Q1=0,2·S+0,4·(P1+P2). Si Q1 és 5 o superior, la qualificació final és Q1.

Per als alumnes amb Q1 inferior a 5, i que hagin fet les proves b), al final del semestre hi haurà una prova de recuperació de tot el curs, amb qualificació R.

La qualificació final serà Q2=0,20·S+màx{0,4·(P1+P2),0,8·R}.


Bibliografia

Bibliografia bàsica:

Cálculo de una y varias variables. S. L. Salas, E. Hille. Ed. Reverté, 1994.

Cálculo Vectorial. J.E. Marsden y A.J.Tromba, Addison Wesley Longma.

Calculus.  T. M. Apóstol. Vol 2. Ed. Reverté.

 


Programari

No n'hi ha cap de previst.


Llista d'idiomes

Nom Grup Idioma Semestre Torn
(PAUL) Pràctiques d'aula 211 Català primer quadrimestre matí-mixt
(PAUL) Pràctiques d'aula 212 Català primer quadrimestre matí-mixt
(SEM) Seminaris 211 Català primer quadrimestre matí-mixt
(SEM) Seminaris 212 Català primer quadrimestre matí-mixt
(TE) Teoria 21 Català primer quadrimestre matí-mixt