Degree | Type | Year |
---|---|---|
2500262 Sociology | OB | 3 |
You can view this information at the end of this document.
In order to be able to take this course, it is advisable to have successfully followed up the Quantitative Methods of Social Research and Analysis Methods.
This is an introductory course to the techniques of multivariate statistical data analysis that is proposed as a continuation of the quantitative perspective of social research initiated in the degree. The procedures, methods and techniques already discussed so far will be expanded to consider what we can generally call the transition from bivariate analysis procedures to multivariate analysis procedures.
In the context of the itinerary of technical and methodological subjects, which seek to offer a complete overview of the different procedures of the sociological scientific activity, and given the extension and variety of the analysis procedures in the field of social sciences, it entails directing the teaching towards the selection of a few topics or instruments considered as some of the most fundamental and of greatest interest in the practice of sociological research.
Specifically, the subject aims to:
1) From the point of view of the students, the construction of their learning will be carried out from:
- Knowledge and understanding of the main concepts associated with the multivariate analysis of statistical data, exemplified by sociological concepts.
- The ability to apply technical instruments for the advanced analysis of statistical data considered in the course.
- Know how to use statistical software for statistical analysis bivariate and multivariable.
- Know how to interpret the statistical results of a data analysis from the technical and substantive point of view according to some knowledge and study objectives of the social reality.
2) From the general conditions of a subject of this type in relation to the use of students it is about:
- Facilitate the understanding, management and interpretation of a basic algebraic and statistical conceptual system to assimilate the use of techniques that involve the quantification and formalization of social phenomena.
- Framing in a balanced, comprehensive and integratingway the contents ofthis subject within the set of the usual methods in sociology.
General introduction
- Objectives of the subject, contents, course dynamics and evaluation
- Multivariate analysis: characteristics and classification of techniques
- Software for the analysis of statistical data
PART I. Analysis of interdependence with qualitative variables
Unit 1. Analysis of contingency tables
- Classic analysis of multidimensional contingency tables
Unit 2. Log-linear analysis
- General linear logarithmic analysis
PART II. The dependence analysis
Unit 3. Analysis of variance
- One-way analysis of variance
- Analysis of multivariate variance
Unit 4. Regression analysis
- Simple regression analysis
- Multiple regression analysis
PART III. The analysis of interdependence for the construction of typologies
Unit 5. Factor analysis
- Mathematical foundations of multivariate data analysis
- Factor analysis of principal components
- Factor analysis of correspondences
Unit 6. Cluster analysis
- Cluster analysis and the construction of typologies
- Automatic cluster analysis
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
Classroom practices | 16 | 0.64 | 1, 11, 5, 8, 10, 18, 20, 16 |
Individual preparation of practical exercises | 30 | 1.2 | 3, 4, 8, 10, 18, 20, 16 |
Master classes | 30 | 1.2 | 1, 11, 9, 4, 5, 6, 7, 8, 18, 20, 16 |
Type: Supervised | |||
Programmed individual tutorials | 2 | 0.08 | 14, 13, 1, 11, 5, 15, 8, 10, 22, 18, 20, 16 |
Type: Autonomous | |||
Individual work | 30 | 1.2 | 13, 1, 11, 5, 15, 8, 10, 22, 18, 20, 16 |
Readings | 30 | 1.2 | 4, 6, 8, 18, 20, 16 |
The course is presented with a continuous dynamic of teaching and learning, which implies tracking the rhythms of the course and the various contents that have been designed in accordance with the different scheduled activities. The contents of each unit have a thread linked to the research process and the continuity of the learning of concepts and instruments that are incorporated progressively, as well as the resolution of problems and questions, which are based in the assimilation and practice of each previous topic of each unit.
Since the objective of the training is that students learn to research sociology using advanced statistical techniques, the teaching methodology and the training activities of the subject result from the combination of expositive sessions with problem solving exercises and practices in the classroom that allow to apply the acquired concepts and explained techniques, as well as tutorials of follow-up and autonomous work.
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
Analysis works | 90,0% | 0 | 0 | 14, 13, 1, 3, 2, 11, 9, 4, 5, 15, 6, 7, 8, 10, 12, 22, 17, 18, 19, 20, 16, 21 |
Practical exercices | 10,0% | 12 | 0.48 | 14, 13, 1, 3, 2, 11, 9, 4, 5, 15, 6, 7, 8, 10, 12, 22, 17, 18, 19, 20, 16, 21 |
The course is evaluated continuously. Regular attendance at class sessions is important to ensure proper learning and assessment.
A final weighted average score of assessment activities equal to or greater than 5 out of 10 is required.
In the evaluation, three aspects are combined:
1) The analysis works. 2 individual works of sociological analysis of quantitative data from a database chosen by the students with the help of software, and in relation to the topics of:
1. Analysis of multidimensional and log-linear contingency tables
a) Selection of data and formulation of hypotheses (5%)
b) Full analysis work (40%)
2. Typological analysis combining factor analysis and classification
a) Selection of data and formulation of hypotheses (5%)
b) Full analysis work (40%)
- A minimum grade of 5 out of 10 is required for each work.
- They will be prepared in content and form as an academic research article according to a defined format and with a maximum length of 3,500 words of writing, attached separately.
- Failure to submit assignments or late submission without justification will result in the subject being abandoned.
- Assignments with a grade lower than 5 can be recovered at any time before January 31. Recovery will be scored out of a maximum of 7.
- Non-submission, late submission without justification or incomplete submission of the analyses will result in the non-submission of the work and the abandonment of the course.
- People who present a work that is a copy, even if it is partial, of another will have a suspension from the subject.
2) The practical exercises (10%). There will be 6 practice sessions that will consist of carrying out in the computer room exercises to apply the techniques of data analysis treated:
Statistical software
Analysis of multidimensional contingency tables and log-linear
Analysis of variance
Regression analysis
Factorial analysis of principal components and multiple correspondences
Cluster analysis
The evaluation of the activity will be the result of the mark obtained in a questionnaire of questions on each practical exercise. If the practical exercise is not done in the classroom on the scheduled day for a justified reason, it can be made up within one week and the maximum mark will be 5.
3) In addition, if the subject is followed by more than 80% of the activities proposed each day of class, it will be possible to add up to 1 point on the final grade.
Criteria for which "Not evaluable" will be assigned: non-submission of assignments, late submission without justification or incomplete presentation of analyses, will result in non-submission of the assignment and abandonment of the subject.
This subject does not provide for the single assessment system.
Basic bibliography
López-Roldán, P.; Fachelli, S. (2015). Metodología de la investigación social cuantitativa. Bellaterra (Barcelona): Dipòsit Digital de Documents, Universitat Autònoma de Barcelona. 1a. edición.
http://ddd.uab.cat/record/129382 | http://pagines.uab.cat/plopez/content/misc
López-Roldán, P. (2015). Recursos para la investigación social. Dipòsit Digital de Documents. Bellaterra (Barcelona): Universitat Autònoma de Barcelona.
http://ddd.uab.cat/record/89349 | http://pagines.uab.cat/plopez
Further reading
The manual Metodología de la investigación social cuantitativa (MISC) contains in each chapter a list of specific bibliographic references that complement the basic bibliography..
Selected bibliographical references:
Aldas, J.; Uriel, E. (2017). Análisis multivariante aplicado con R (2.ª ed.). Madrid: Paraninfo
Ato García, M.; López García, J. J. (1996). Análisis estadístico para datos categóricos. Madrid: Síntesis.
Bailey, K. D. (1994). Typologies and Taxonomies. An Introduction to Classification Techniques. Thousand Oaks (California): Sage.
Brown, B. L.; Hendrix, S. B.; Hedges, D. W.; Smith, T. B. (2011). Multivariate analysis for the biobehavioral and social sciences. Agraphical approach. Hoboken: John Wiley & Sons.
Cea d’Ancona, M. A. (2002/2014). Anàlisis multivariable. Teoría y práctica en la investigación social. Madrid: Síntesis.
Christensen, R. R. (1997). Log-linear models and logistic regression. New York: Springer-Verlag.
Correa Piñero, A. D. (2002). Análisis logarítmico lineal. Madrid: La Muralla.
Everitt, B.; Hothorn, T. (2011). An introduction to applied multivariate analysis with R. New York: Springer.
Greenacre, M. J. (2008). La práctica del análisis de correspondencias. Madrid: Fundación BBVA.
http://www.fbbva.es/TLFU/tlfu/esp/publicaciones/libros/fichalibro/index.jsp?codigo=300
García Ferrando, M. (1987). Socioestadística. Introducción a la estadística en sociología. 2a edició amp. Madrid: Alianza. Alianza Universidad Textos, 96.
Guillén, M. F. (1992). Análisis de regresión múltiple. Madrid: Centro de Investigaciones Sociológicas.
Hahs-Vaughn, D. L. (2017). Applied multivariate statistical concepts. Nueva York: Routledge.
Hair, J. F., Black, W. C.; Babin, B. J.; Anderson, R. E. (2013). Multivariate data analysis. Pearson new international edition (7.ª ed.). Harlow: Pearson.
Hernández Encinas, L. (2001). Técnicas de taxonomía numérica. Madrid: La Muralla.
Harlow, L. L. (2014). The essence of multivariate thinking. Basic themes and methods (2.ª ed.). Nueva York: Routledge.
Joaristi Olariaga, L.; Lizasoain Hernandez, L. (1999). Análisis de correspondencias. Madrid: La Muralla.
Lévy Mangin, J. P.; Varela Mallou, J. (2003/2008) Análisis multivariables para las ciencias sociales. Madrid. Pearson-Prentice Hall.
López-Roldán, P.; Fachelli, S. (2018). Metodología de construcción de tipologías para el análisis de la realidad social. Bellaterra (Cerdanyola del Vallès): Dipòsit Digital de Documents, Universitat Autònoma de Barcelona. 2a. edición.
MacFarland, T. W. (2012). Two-Way Analysis of Variance: Statistical Tests and Graphics Using R. New York: Springer.
Marradi, A. (1990). Classification, typology, taxonomy. Quality & Quantity, 24, 129-157.
Mateos-Aparicio, G.; Hernandez Estrada, A. (2021). Analisis multivariante de datos: Cómo buscar patrones de comportamiento en Big Data. Madrid: Pirámide.
Meneses, J. (2019). Introducción al análisis multivariante. Barcelona: UOC
Miller, J. E. (2013). The Chicago guide to writing about multivariate analysis (2.ª ed.). Chicago: The University of Chicago Press.
Pituch, K. A.; Stevens, J. P. (2016). Applied multivariate statistics for the social sciences (6.ª ed.). Nueva York: Routledge.
Powers, D. A.; Xie, Y. (2008). Statistical Methods for Categorical Data Analysis. Bingley, U.K.: Emerald. 2a. edició.
Sánchez Carrión, J.J. (1999). Manual de análisis estadístico de los datos. Madrid: Alianza. Manuales, 055.
Sánchez Carrión, J. J. (Ed.) (1984). Introducción a las técnicas de multivariable aplicadas a las ciencias sociales. Madrid: Centro de Investigaciones Sociológicas.
Sánchez Carrión, J. J. (1989). Análisis de tablas de contingencia. El uso de los porcentajes en ciencias sociales. Madrid: Centro de Investigaciones Sociológicas-Siglo XXI.
Tabachnick, B. G.; Fidell, L. S. (2019). Using multivariate statistics (7.ª ed.). Nueva York: Pearson.
Tejedor, F. J. (1999). Análisis de varianza: introducción conceptual y diseños básicos. Madrid: La Muralla.
VV.AA. (1996). La construcció de tipologies. Exemples. Monogràfic de Papers. Revista de Sociologia, 48.
http://ddd.uab.cat/search?cc=papers&f=issue&p=02102862n48&rg=100&sf=fpage&so=a&ln=en
The course will use the IBM SPSS Statistics software for statistical data analysis.
In addition, Moodle, MS-Office (Word, Excel) and Adobe Acrobat will be used.
Name | Group | Language | Semester | Turn |
---|---|---|---|---|
(PAUL) Classroom practices | 1 | Catalan | first semester | morning-mixed |
(PAUL) Classroom practices | 51 | Catalan | first semester | afternoon |
(SEM) Seminars | 1 | Catalan | first semester | morning-mixed |
(SEM) Seminars | 10 | Catalan | first semester | morning-mixed |
(SEM) Seminars | 51 | Catalan | first semester | afternoon |
(TE) Theory | 1 | Catalan | first semester | morning-mixed |
(TE) Theory | 51 | Catalan | first semester | afternoon |