Titulación | Tipo | Curso |
---|---|---|
2500253 Biotecnología | FB | 2 |
Puede consultar esta información al final del documento.
Es fuertemente recomendable haber superado las asignaturas: Matemáticas y los contenidos
de Informática de la asignatura del Laboratorio Integrado 1.
Entendemos que los estudiantes ya conocen el uso de calculadoras y de ordenadores.
En la asignatura de Métodos Numéricos se estudiarán algoritmos computacionales para resolver algunos de los problemas básicos que se suelen presentar en el cálculo científico como pueden ser, calcular la solución de ecuaciones no lineales, la resolución de sistemas de ecuaciones lineales y la resolución numérica de ecuaciones diferenciales.
El objetivo de la asignatura es que el estudiante conozca estos métodos desde su fundamento matemático, estudiando las propiedades de convergencia y estabilidad y la estimación de los errores, hasta su aplicabilidad y posibles limitaciones.
Las prácticas con ordenador tendrán un peso importante en esta asignatura. El objetivo es que las prácticas sean un complemento para entender mejor los métodos numéricos. En este sentido, las prácticas permiten poner de manifiesto en diferentes ejemplos las propiedades de convergencia y estabilidad estudiadas analíticamente en las clases de teoría y de problemas. También servirán para comparar diferentes métodos para resolver un mismo problema. Hay que tener en cuenta que la mayoría de ejemplos se plantearán de un nivel muy sencillo para poder ser hechos a mano o con una simple calculadora, pero que los problemas reales suelen a ser de un orden de magnitud muy superior y no se pueden hacer sin la ayuda de un ordenador, y es allí donde se producen más claramente los fenómenos que se describirán en teoría.
Uno no puede programar lo que no sabe hacer a mano. Por lo tanto, el procedimiento habitual es entender primero el método en teoría, tras hacer un par de ejercicios a mano o con calculadora para dominar el algoritmo, y finalmente hacer un programa con el que abordar problemas de más alta magnitud. Es por eso que tienen la misma importancia las clasesde teoría, problemasy prácticas.
Capacidades o destrezas a adquirir.
Dearrollar criterio suficiente para detectar resultados erróneos y capacidad para encontrar el origen de los errores (problema mal condicionado, método no adecuado para el problema considerado, inestabilidad numérica, etc.) y corregirlos.
0. REPASO DE CONOCIMIENTOS BÁSICOS PARA LA ASIGNATURA
1. ERRORES
2. RESOLUCIÓN DE ECUACIONES NO LINEALES
3. INTERPOLACIÓN E INTEGRACIÓN DE FUNCIONES
4. ECUACIONES DIFERENCIALES
5. REGRESIÓN Y APROXIMACIÓN
Título | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|
Tipo: Dirigidas | |||
Clases de teoria y problemas | 45 | 1,8 | |
Tipo: Supervisadas | |||
Evaluacion continuada | 5 | 0,2 | |
Tipo: Autónomas | |||
Trabajo personal, estudio y resolucion de problemas | 95 | 3,8 |
Este curso consta de tres horas por semana que se reparten en seminarios teóricos y sesiones de problemas.
Además, dentro del curso "Laboratorio Integrado 4" hay cinco sesiones a lo largo del semestre de laboratorio de informática relacionadas con el curso de tres horas cada una.
En los seminarios teóricos se introducirán varios métodos numéricos y se estudiarán sus propiedades básicas. Las sesiones de problemas se dedicarán a la resolución de problemas de naturaleza teórica y / o problemas que requieran el uso de una calculadora para ser resueltos. Se ofrecerán listas de problemas a lo largo del semestre y estarán disponibles en el sitio web del campus virtual. Es esencial traer una calculadora a estas sesiones.
Las sesiones de problemas se intercalarán dentro del horario habitual a medida que se completen los temas.
En las sesiones de laboratorio de computación el estudiante tendrá que resolver numéricamente ciertos problemas con la ayuda del ordenador. Estas sesiones tendrán lugar en los laboratorios de PCs de la facultad. El alumno dispondrá de una guía que describirá los pasos a seguir en cada sesión, que consistirá en la implementación de algunos de los métodos numéricos estudiados y su uso para resolver los problemas propuestos.
Se recomienda encarecidamente asistir a las sesiones de problemas. Las condiciones de asistencia a las sesiones de laboratorio informático serán reguladas por el curso de "Laboratorio Integrado 4". Sin embargo, también se recomienda asistir a las sesiones de Laboratorio Integrado 4 relacionadas con este curso ya que la realización simultánea de seminarios teóricos, problemas y sesión de laboratorio de computación es la mejor manera de alcanzar los objetivos de este curso.
El material didáctico relacionado con este curso se proporcionará a través del Campus Virtual.
Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.
Título | Peso | Horas | ECTS | Resultados de aprendizaje |
---|---|---|---|---|
Participación en la clase de problemas | 4% | 1 | 0,04 | CM08, CM09, KM07, SM09 |
Prueba parcial teoría 1 | 5% | 0,25 | 0,01 | KM08, SM07 |
Prueba parcial teoría 2 | 5% | 0,25 | 0,01 | KM08, SM07 |
Prueba parcial teoría 3 | 5% | 0,25 | 0,01 | KM08, SM07 |
Prueba parcial teoría 4 | 5% | 0,25 | 0,01 | KM08, SM07 |
Prueba resolucion de problemas 1 | 19% | 0,75 | 0,03 | CM08, CM09, KM07, KM08, SM07, SM09 |
Prueba resolucion de problemas 2 | 19% | 0,75 | 0,03 | CM08, CM09, KM07, KM08, SM07, SM09 |
Prueba resolucion de problemas 3 | 19% | 0,75 | 0,03 | CM08, CM09, KM07, KM08, SM07, SM09 |
Prueba resolucion de problemas 4 | 19% | 0,75 | 0,03 | CM08, CM09, KM07, KM08, SM07, SM09 |
La evaluación de la asignatura se llevará a cabo mediante una evaluación continua en la que el alumno debe demostrar su nivel de asimilación de los conceptos de la asignatura.
Durante el curso habrá cuatro bloques de evaluación. Con el resultado de todas las pruebas se obtendrá una calificación que de ser igual o superior a 5 dará la calificación final del curso. No es necesario obtener ninguna nota mínima en ninguna de las pruebas parciales para aprobar la asignatura.
Las matrículas de honor serán asignadas a las mejores notas obtenidas en la evaluación continua.
Habrá un examen de recuperación de todo el curso.
Esta asignatura no contempla el sistema de evaluación única
A. Bjorck i G. Dahlquist, Numerical methods, Prentice Hall, Englewood Cliffs, New Jersey (1977)
A. Aubanell, A. Benseny i A. Delshams, Eines bàsiques del Càlcul numèric, Manuals de la UAB, (1992)
C. Bonet i altres, Introducció al Càlcul Numèric, Universitat Politècnica de Catalunya, (1989)
R. L. Burden y J. D. Faires, Análisis Numérico, Grupo Editorial Iberoamérica, (1985)
Bibliografia mas relevante:
A. Bjorck, G. Dahlquist, Numerical methods, Prentice Hall, Englewood Cliffs, New Jersey (1977)
A. Aubanell, A. Benseny i A. Delshams, Eines bàsiques del Càlcul numèric, Manuals de la UAB, (1992)
No se requiere ningun software.
Nombre | Grupo | Idioma | Semestre | Turno |
---|---|---|---|---|
(TE) Teoría | 42 | Catalán | segundo cuatrimestre | tarde |