Logo UAB
2023/2024

Processament d'Imatges de Teledetecció

Codi: 43384 Crèdits: 6
Titulació Tipus Curs Semestre
4314828 Teledetecció i Sistemes d'Informació Geogràfica OB 0 1

Professor/a de contacte

Nom:
Xavier Pons Fernandez
Correu electrònic:
xavier.pons@uab.cat

Idiomes dels grups

Per consultar l'idioma/es de l'assignatura caldrà anar a l'apartat "Metodologia" de la guia docent.

Equip docent

Xavier Pons Fernandez
Joan Cristian Padró Garcia

Equip docent extern a la UAB

Jordi Cristóbal
Jordi Joan Mallorquí Franquet
Mercè Vall-Llossera Ferran

Prerequisits

No es requereixen requisits previs


Objectius

Al finalitzar l’assignatura, l’alumne/a serà capaç de:

  • Dominar diferents eines de processament primari d’imatges aèries i de satèl·lit.
  • Dominar els principis físics que regeixen la captació remota d’imatges així com les transformacions del contingut de la pròpia imatge.
  • Distingir les diferents fonts de deformacions geomètriques de la imatge així com les possibles interferències en el senyal captat causades per efectes atmosfèrics o d’il·luminació (topografia, etc.)
  • Aplicar correctament les metodologies per pal·liar les diferents fonts d’error a fi de poder visualitzar i extreure paràmetres físics de les dades rebudes.

Competències

  • Aplicar diferents metodologies de processament primari d'imatges obtingudes per sensors remots per a la posterior extracció d'informació geogràfica.
  • Demostrar una visió integradora dels problemes, plantejant diverses solucions innovadores i prenent decisions apropiades en funció dels seus coneixements i judicis.
  • Dissenyar i aplicar una metodologia d'estudi, basada en els coneixements adquirits, per a un cas d'ús específic.
  • Que els estudiants sàpiguen aplicar els coneixements adquirits i la seva capacitat de resolució de problemes en entorns nous o poc coneguts dins de contextos més amplis (o multidisciplinaris) relacionats amb la seva àrea d'estudi.
  • Que els estudiants tinguin les habilitats d'aprenentatge que els permetin continuar estudiant, en gran manera, amb treball autònom a autodirigit.
  • Tenir coneixements que aportin la base o l'oportunitat de ser originals en el desenvolupament o l'aplicació d'idees, sovint en un context de recerca.
  • Utilitzar diferents programaris especialitzats de SIG i teledetecció, així com altres programaris relacionats.

Resultats d'aprenentatge

  1. Aplicar correctament les metodologies per pal·liar les diferents fonts d'error a fi de poder visualitzar i extreure paràmetres físics de les dades rebudes.
  2. Demostrar una visió integradora dels problemes, plantejant diverses solucions innovadores i prenent decisions apropiades en funció dels seus coneixements i judicis.
  3. Dissenyar i aplicar una metodologia d'estudi, basada en els coneixements adquirits, per a un cas d'ús específic.
  4. Distingir les diferents fonts de deformacions geomètriques de la imatge, així com les possibles interferències en el senyal captat causades pels efectes atmosfèrics o d'il·luminació (topografia, etc.).
  5. Dominar diferents eines de processament primari d'imatges aèries i de satèl·lit.
  6. Dominar els principis físics que regeixen la captació remota d'imatges, així com les transformacions del contingut de la mateixa imatge.
  7. Que els estudiants sàpiguen aplicar els coneixements adquirits i la seva capacitat de resolució de problemes en entorns nous o poc coneguts dins de contextos més amplis (o multidisciplinaris) relacionats amb la seva àrea d'estudi.
  8. Que els estudiants tinguin les habilitats d'aprenentatge que els permetin continuar estudiant, en gran manera, amb treball autònom a autodirigit.
  9. Tenir coneixements que aportin la base o l'oportunitat de ser originals en el desenvolupament o l'aplicació d'idees, sovint en un context de recerca.

Continguts

PRINCIPIS FÍSICS DE LA TELEDETECCIÓ

Temari (generalitats i espectre solar)
  1. Conceptes: radiació, ona i espectre electromagnètic, polarització. Relacions fonamentals entre freqüència, longitud d'ona i energia transportada.
  2. Magnituds físiques de base (terminologia i simbologia, definicions, unitats): Energia radiant, flux energètic, intensitat energètica, radiància, excitància energètica, irradiància, reflectància, albedo, transmitància, absortància; absorbància. Magnituds espectrals.
  3. Reflexió especular, difusa i lambertiana.
  4. Cos negre (llei de Planck, llei d'Stefan-Boltzman, llei del desplaçament de Wien).
  5. La radiació solar. Característiques exoatmosfèriques i a la superfície de la Terra; interacció amb l'atmosfera i finestres atmosfèriques.
  6. Signatures espectrals. Principals característiques de l'aigua, els sòls i les roques i la vegetació en el visible i infraroig no tèrmic.
  7. Factors que influeixen en la signatura espectral enregistrada.
Temari (tèrmic)
  1. La radiació tèrmica emesa per la Terra. Aproximacions en Teledetecció.
  2. Magnituds físiques de la regió de l’infraroig tèrmic.
  3. Llei de Kirchhoff. Cos negre, cos blanc i cos gris. Radiadors selectius. Comportament tèrmic d’un objecte: paràmetres relacionats.
  4. Comportament tèrmic d’un objecte: paràmetres relacionats.
  5. Comportament espectral de les diferents cobertes en la regió de l’infraroig tèrmic.
  6. Factors de què depèn l’emissivitat.
  7. Mesura de l’emissivitat amb dades de camp.
  8. Mesura de l’emissivitat amb dades satèl·lit.
Temari (microones actives)
  1. Microones actives: Imatges Radar.
  2. Interacció ona-matèria: Secció recta Radari Coeficient de retrodispersió.
  3. Models de retrodispersió.
  4. Polarimetria SAR.
  5. Interferometria SAR.
Temari (microones passives)
  1. Sensors passius: fonaments i principis físics.
  2. plicacions de microones passives E.O.
  3. Radiòmetres de microones.
    • FOM (Figures of Merit): Resolució angular i resolució radiomètrica.
    • Calibració: interna, externa, ús de la informació multiobservació.
  4. Present i futur EO missions de microones passives.

RECTIFICACIÓ GEOMÈTRICA D’IMATGES AÈRIES I DE SATÈL·LIT

  1. Necessitat d'efectuar correccions geomètriques. Fonts de deformacions. Concepte d’ortoimatge, d’ortofoto, d’ortofoto autèntica d’ortofotomapa. Correccions en bases vectorials.
  2. Modelsfísics (equacions de col·linealitat, models orbitals), semi-empírics (correccions polinòmiques amb i sense relleu, models de funcions racionals, triangulació de Delaunay) i mixtos. Model de les imatges radar: determinació del pas de mostreig en azimut i distància. Paper del relleu. Punts de control sobre el terreny (GCP), punts de test, punts homòlegs.
  3. Geometria de la imatge radar. Mostreig de la imatge. Distorsions geomètriques de les imatges.Geocodificació precisa de lesimatges mitjançant Models Digitals d’Elevacions (MDE o DEM). Obtenció del DEM i Cartografia Radar. Aproximacions per a zones de baix relleu. Exemples.
  4. Procés bàsic de correcció. Consideracions cromàtiques, radiomètriques i geomètriques en el remostreig de la imatge: veí més proper, interpolació bilineal i bicúbica. Consideracions sobre la dimensió del píxel de sortida.
  5. Fonts de punts de control. Col·locació automàtica de punts de control.
  6. Aspectes bàsics dels models físics. Necessitat de la consideració del relleu.
  7. Aspectes bàsics dels models semi-empírics.
    1. Models polinòmics de 1r i 2n grau. Casos d'aplicació.
    2. Models polinòmics grau superior. Casos d'aplicació.
    3. Models polinòmics amb consideració del relleu.
    4. Models de funcions racionals.
    5. Triangulació de Delaunay.
  8. Models mixtos: Teoria i exemples en ASTER, MODIS, SSM/I i SMOS.
  9. Estimació de l'error de la correcció geomètrica. Interpretació estadística de l'RMS.
  10. Mosaics i geometria d'imatges.
  11. Concreció pràctica dels principals models.

CORRECCIÓ RADIOMÈTRICAD’IMATGES

  1. Necessitat d'efectuar correccions radiomètriques. Calibració dels sensors. Fonts de distorsió del senyal. Conversió de DN a radiàncies. Interès i obtenció de reflectàncies.
  2. Formulació de correccions en el visible i infraroig no tèrmic.
    1. Paper del Sol i de l’atmosfera. Radiància exoatmosfèrica, Transmitància. Variació al llarg de l’any. Variacióespectral. Radiació atmosfèrica difusa.
    2. Paper del relleu: Angle d’incidència, autoombres, ombres projectades. Volta celest visible. Radiació reflectida.
    3. Problemàtica de la barreja de sensors en un mateix estudi. Possibilitats d’ús per a la deducció d’àrees pseudoinvariants (PIA) que ajudin en l’ajust dels paràmetres atmosfèrics i en la utilització de dades provinents de sondes atmosfèriques.
    4. Ús combinat de sensors in situ com espectroradiòmètres de mà o fotòmetres solars.
  3. Alternatives a les correccions basades en més riquesa multispectral per disponibilitat de més imatges en diferents dates: avantatges i limitacions.

Metodologia

Llengua vehicular majoritària: espanyol (spa), tot i que els materials bibliogràfics poden estar en altres llengües, majoritàriament anglès.

En aquest mòdul es realitzen 3 grups d'activitats d'aprenentatge:

  • Les activitats dirigides consisteixen en classes de teoria i pràctiques que es realitzaran en una aula d'informàtica especialitzada. A l'inici de cadascuna de les matèries que formen el mòdul els docents explicaran l'estructura dels continguts teorico-pràctics, així com el mètode d'avaluació.
  • Les activitats supervisades consisteixen en pràctiques d'aula que permetran elaborar els treballs i exercicis de cada matèria, així com sessions de tutories amb els docents en cas que els estudiants ho sol·licitin.
  • Les activitats autònomes són el conjunt d'activitats relacionades amb l'elaboració de treballs, exercicis i exàmens, com ara l'estudi de diferent material en forma d'articles, informes, dades, etc., definides segons les necessitats de treball autònom cada estudiant.

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Activitats formatives

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classes de resolució d'exercicis 8 0,32 8, 1, 3, 4, 6, 5, 7, 2, 9
Classes magistrals / expositives 27 1,08 8, 1, 3, 4, 6, 5, 7, 2, 9
Tipus: Supervisades      
Pràctiques d'aula 34 1,36 8, 1, 3, 4, 6, 5, 7, 2, 9
Tutories 4 0,16 8, 1, 3, 4, 6, 5, 7, 2, 9
Tipus: Autònomes      
Elaboració de treballs 58 2,32 8, 1, 3, 4, 6, 5, 7, 2, 9
Estudi personal 15 0,6 8, 1, 3, 4, 6, 5, 7, 2, 9
Lectura d'articles i informes d'interés 2 0,08 8, 1, 3, 4, 6, 5, 7, 2, 9

Avaluació

Aquest mòdul no preveu el sistema d’avaluació única.

L’avaluació d’aquesta assignatura consta del següent sistema:

  • La realització de 2 exàmens, que valdran entre un 60% i un 70% de la nota final i que inclouran la matèria teòrica i pràctica realitzada.
  • La realització de diferents treballs pràctics proposats al llarg de la docència del mòdul i lliurats dins del termini fixat, que valdran entre un 30 % i un 40 % de la nota final. Es valorarà una presentació formal correcta i una elaboració acurada.

Aspectes a tenir en compte.

  • L’assistència continuada a classe és altament recomanable pel correcte seguiment de les assignatures. Només en casos d’impossibilitat física d’assistència presencial el seguiment en streaming està justificat, ja que una part important de les experiències i aprenentatges s’assoleixen plenament amb el contacte amb el professorat i els companys de classe.
  • En cas d’haver de lliurar treballs pràctics, aquest lliurament cal fer-lo dins dels terminis previstos perquè siguin avaluats.
  • En el moment de realització de cada activitat avaluativa, l’Equip docent  informarà l’alumnat del procediment i data de revisió de les qualificacions.

Recuperació.

  • En cas que no s’hagi assolit una nota mínima de 5 sobre 10 s’haurà de recuperar l’activitat d’avaluació. La possibilitat de recuperació és única.
  • L’Equip docent corresponent informarà de la data assignada per a realitzar/lliurar l’activitat d’avaluació.

 Còpies i plagis.

  • Les còpies fan referència a les evidències de que el treball o l'examen s'ha fet en part o totalment sense contribució intel·lectual de l'autor. En aquesta definició s'hi inclouen també les temptatives provades de còpia en exàmens lliuraments de treballs i les violacions de les normes que n'asseguren l'autoria intel·lectual. Els plagis fan referència als treballs i textos d'altres autors que es fan passar com a propis. Són un delicte contra la propietat intel·lectual. Per evitar incórrer en plagi, citeu les fonts que feu servir a l'hora d'escriure l'informe d'un treball. D’acord amb la normativa de la UAB, tant còpies com plagis o qualsevol intent d'alterar el resultat de l'avaluació, pròpia o aliena -deixant copiar, per exemple- impliquen una nota de la part corresponent (teoria, problemes, pràctiques) de 0 i, en aquest cas, un suspès de l'assignatura, sense que això limiti el dret a emprendre accions en contra dels qui hi hagin participat, tant a l'àmbit acadèmic com en el penal. Vegeu documentació de la UAB sobre "plagi"a: http://wuster.uab.es/web_argumenta_obert/unit_20/sot_2_01.html

Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Examen teòric i pràctic 60% - 70% 2 0,08 8, 1, 3, 4, 6, 5, 7, 2, 9
Treballs pràctics 40% - 60% 0 0 8, 1, 3, 4, 6, 5, 7, 2, 9

Bibliografia

PRINCIPIS FÍSICS

General i de l'espectre solar i tèrmic

Adams, J. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system, Journal of Geophysical Research, 79(32): 4829–4836.
Baig, M. (2002) “Òptica atmosfèrica. La física del paisatge” in Jou, D.; Llebot, J.E., (eds) “Física de la quotidianitat”. Edicions Caixa de Sabadell, ISBN: 84-95166-42-9. P. 115-127.
Baldridge, A. M., S.J. Hook, C.I. Grove i G. Rivera (2009) The ASTER Spectral Library Version 2.0, Remote Sensing of Environment, 113: 711-715. http://speclib.jpl.nasa.gov/ [página visitada el 30 de juliol de 2023].
Bariou, R., D. Lecamus i F. Le Henaff (1985b) "L'atmosphère." Presses Universitaires de Rennes 2. Rennes. 77 pp. Bariou, R., D. Lecamus i F. Le Henaff (1985c) "Le rayonnement electromagnetique." Presses Universitaires de Rennes 2. Rennes.
Barsi, J.A., J.L. Barker, i J.R. Schott. (2005) An atmospheric correction parameter calculator for a single thermal band Earth-sensing instrument, IGARSS03, 21-25 July 2003, Centre de Congres Pierre Baudis, Toulouse, France. http://atmcorr.gsfc.nasa.gov/ [pàgina visitada el 30 de juliol de 2023]..
Bunnik, N.J.J. (1984) in P.N. Slater (Ed.) "SPIE Critical review of remote sensing." Proceedings SPIE, 475:2-11.
Caselles, V., i Sobrino, J. A. (1989) Determination of frosts in oranges groves from NOAA-9 AVHRR data, Remote Sensing of Environment, 29: 135-46.
Chance, K. i Kurucz, R.L. (2010) An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. Journal of Quantitative Spectroscopy & Radiative Transfer, 111: 1289–1295.
Chen, H.S. (1985) Space remotesensing systems: an introduction. Academic Press. Orlando. 257 pp.
Dozier, J. (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper, Remote Sensing of Environment, 28:9-22.
Elachi, C. i van Zyl, J.J. (2006) “Introduction to the physics and techniques of remote sensing”, John Wiley & Sons. N.Y. 584 p. 2ª edició.
Emery, W. i A. Camps (2017) "Introduction to Satellite Remote Sensing. Atmosphere, Ocean, Land and Cryosphere Applications". Elsevier. 860 pp.
Guyot, G. (1989) "Signatures spectrales des surfaces naturelles", Paradigme. Caen. pp. 59-112.
Van de Griend, A. A., i Owe, M. (1993) On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces, International Journal of Remote Sensing, 14: 1119-1131.
Kopp, G., i Lean, J.L. (2011) A new, lower value of total solar irradiance: evidence and climate significance, Geophysical Research Letters, 38, L01706, doi:10.1029/2010GL045777.
Liu, B.Y.H. i Jordan, R.C. (1960) The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Solar Energy, 4(3):1-19.
Li, S., Zhou, X., i Morris, K. (1999) Measurement of snow and sea ice surface temperature and emissivity in the Ross sea, IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg Germany, 28 June - 02 July, 1999.
Melià, J. (1991) "Fundamentos físicos de la teledetección: leyes y principios básicos",  in Gandía, S. i J. Melià (eds.) "La teledetección en el seguimiento de los fenómenos naturales. Recursos renovables: Agricultura." Departament de Termodinàmica. Universitat de València. pp. 51-83.
Milton, E.J., Schaepman, M.E., Anderson, K., Kneubühler, M. i Fox, N. 2009 Progress in field spectroscopy, Remote Sensing of Environment: 113 (1), S92-S109.
McCoy, R.M. (2005) “Field methods in remote sensing”, The Guilford Press, New York. 159p.
Milman, A.S. (1999) “Mathematical rinciples of remote sensing”, CRC Press. 406 p.
Pons, X., i Arcalís, A. (2012) "Diccionari terminològic de teledetecció", Enciclopèdia Catalana i Institut Cartogràfic de Catalunya. Barcelona. 597 pp. També a http://www.termcat.cat/ca/Diccionaris_En_Linia/197/Cerca/ [pàgina visitada el 30 de juliol de 2023].
Rees, W.G. (2001) "Physical principles of remote sensing", Cambridge University Press. Cambridge. 2ª edició. 372 pp.
Rees, G. (1999) “The Remote Sensing Data Book”, Cambridge, Cambridge University Press.
Rees, G. (2006) “Remote Sensing of Snow and Ice”, CRC Press, Taylor & Francis Group: New York. 285 pp.
Rubio, E., Caselles, V., i Badenas, C. (1997) Emissivity measurements of several soils and vegetation types in the 8-14 µm wave band: analysis of two field methods, Remote Sensing of Environment, 59: 490-521.
Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S. i Martonchik, J.V. (2006) Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sensing of Environment, 103: 27-42.
Salisbury, J. W., i D’Aria, D. M. (1992) Emissivity of terrestrial materials in the 8-14 µm atmospheric window, Remote Sensing of Environment, 42: 83-106.
Singh, D., Srivastava, V.K., Bhatt, J. i Bhattacharya, S.  (2011) Mineralogical mapping of lunar orbits of Chandrayaan – 1 Mission using Hyper Spectral Imaging Camera (HySI) and Terrain Mapping Camera (TMC) data, Photogrammetric Engineering and Remote Sensing, 77(1):6-12.
Slater, P.N. (1985) "Radiometric considerations in Remote Sensing", Proceedings of the IEEE, 73:997-1011.
Smith, J.A. (1983) in Colwell, R.N. (Ed.) "Manual of Remote Sensing." American Society of Photogrammetry. Falls Church. Virginia. pp :62-114.
Sobrino, J. A. (Ed.) (2000). “Teledetección”, València, Servei de Publicacions, Universitat de València.
Sobrino, J.A., i Raissouni, N. (2000) Toward remote sensing methods for land cover dynamic monitoring: application to Morocco, International Journal of Remote Sensing, 21: 353-366.
Sobrino, J. A., J. C. Jiménez-Muñoz, G. Sòria, M. Romaguera, L. Guanter, J. Moreno, A. Plaza i P. Martínez (2008) Land surface emissivity retrieval from different VNIR and TIR sensors, IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327. doi: 10.1109/TGRS.2007.904834.
Thuillier, G., M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P.C. Simon, i H. Mandel (2003) The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions, Solar Physics, 214(1):1-22
Valor, E. i Caselles, V. (1996) Mapping land surface emissivity from NDVI:Application to European, African and South American areas, Remote Sensing of Environment, 57: 167-184.
Valor, E. i Caselles, V. (2005) Validation of the vegetation cover method for land surface emissivity estimation.  A Caselles, Valor i Coll (2005). Recent research developments in Thermal Remote Sensing. Research Signpost, India.
Van de Griend, A. A. i Owe, M. (1993) On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces, International Journal of Remote Sensing, 14: 1119-1131.
Wittich, K.P. (1997) Some simple relationships between land-surface emissivity, greenness and the plant cover fraction for use in satellite remote sensing, International Journal of Biometeorology, 41: 58-64
Wolfe, W. L. (1998) Introduction to radiometry. Tutorial texts in Optical Engineering. Vol. TT29. SPIE. Washington.
Zhang, Y. (1999) MODIS UCSB Emissivity Library. http://www.icess.ucsb.edu/modis/EMIS/html/em.html. [pàgina visitada el 23 de juliol de 2023].

Microones actives i passives

F.T. Ulaby, D.G. Long (Eds.) (2014), “Microwave Radar and Radiometric Remote Sensing”, Univ. Michigan Press.
C.Oliver, S.Quegan (2004), “Understanding Synthetic Aperture Radar Images”, SciTech Publishing.
I.C. Cumming, F.H.Wong (2005), “Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation”, Artech House, Norwood, MA-USA.
C. Elachi (1988) “Spaceborne Radar Remote Sensing: Applications and Techniques”, IEEE Press.
Elachi, C. i van Zyl, J.J. (2006) “Introduction To The Physics and Techniques of Remote Sensing.” John Wiley & Sons. N.Y. 584 pp. 2ª edició.
Curlander, McDonough, “Synthetic Aperture Radar”, John Wiley, 1991
Radar Polarimetry for Geoscience Application, Fawwaz T. Ulaby, C. Elachi; 1990
Skou, “Microwave Radiometer Systems: Design & Analysis”, Artech House, 1989
Janssen, “Atmospheric Remote Sensing by Microwave Radiometry”, John Wiley, 1993
Sharkov, “Passive Microwave Remote Sensing of the Earth. Physical Foundations”, Springer-Praxis, 2003

RECTIFICACIÓ GEOMÈTRICA D'IMATGES

Abdullah, Q.A. (2010)  “Mapping Matters” Photogram. Engineering & Remote Sensing, 76(8): 885,893.
Aguilar, M.A., F.J. Aguilar, F. Agüera, and Jaime A. Sánchez (2007) Geometric Accuracy Assessment of QuickBird Basic Imagery Using Different Operational Approaches. Photogram. Engineering & Remote Sensing, 73(12): 1321-1332
Ardizone, J., A. Arozarena, J. Delgado, M. Herrero, G. Villa and P. Vivas (1993), Análisis estadístico para la corrección geométrica de imágenes de satélite. Proceedings of the IV Reunión Científica de la Asociación Española deTeledetección, Sevilla, Spain (November 1991), pp.:78-85.
Bayer, T. (2014), Estimation of an unknown cartographic projection and its parameters from the map. Geoinformatica, 18:621–669.
Beyer, E.P. (1983), Thematic Mapper Geometric Correction Processing. Seventeenth International Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, pp.:319-334.
Billingsley, F.C. (1983), Data Processing and Reprocessing. in Colwell, R.N. (ed.) Manual of Remote Sensing. American Society of Photogrammetry, Falls Church, Virginia, pp.719-792.
Blanc, P. and L. Wald (1998), Validation protocol applied to an automatic co-registration method based on multiresolution analysis and local deformation models, Proceedings of the ISPRS Commission II, Cambridge,England, 13-17 July 1998, 2:11-19.
Chen, L.-C., Teo, T.-A., Liu, C.-L. (2006) "The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images" PE&RS 72(5):573-579
Cristóbal, J., Pons, X., Serra, P. (2004) " Sobre el uso operativo de Landsat-7 ETM+ en Europa" Revista de Teledetección, 21: 55-59.
Cumming, I.G., Wong F.H., “Digital processing of Synthetic Aperture Radar Data”, Artech House, Norwood USA, 2005.
Curlander, J.C. and R.N. McDonough (1991) “Synthetic Aperture Radar”, John Wiley & Sons, New York.
D'Souza, G. and T. D. G. Sandford, (1996) 'Techniques for geometric correction of NOAA AVHRR imagery' in Advances in the Use of AVHRR Data for Land Applications, D'Souza, G., A. S. Belward and J.-P. Malingreau (Eds.), Euro Courses: Remote Sensing 5, Kluwer Academic Publishers, Dordrecht, The Netherlands, 153-193.
Emery, W. and A. Camps (2017) "Introduction to Satellite Remote Sensing.Atmosphere, Ocean, Land and Cryosphere Applications". Elsevier. 860 pp.
Greve, C. (1997) Digital Photogrammetry: An Addendum to the Manual of Photogrammetry. American Society for Photogrammetry &Remote Sensing. Falls Church, Virginia
Gugan, D.J. (1987) Practical aspects of topographic mapping from SPOT imagery. Photogrammetric Record, 12(69):349-355.
Hu, Y. V. Tao and A. Croitoru (2004) Understanding the rational function model: methods and applications, http://www.geoict.net/Resources/Publications/IAPRS2004_RFM2394.pdf (pàgina visitada 10-Nov-2007)
ICC (Institut Cartogràfic de Catalunya) (2005) Sistemes de captura primària de dades http://www.icc.es/pdf/ca/common/icc/publicacions_icc/dcomercial/dcomercial_captura_camera_digital.pdf (explica la càmera DMC ICC) (pàgina visitada 10-Nov-2008)
Konecny, G., P. Lohmann, H. Engel and E. Kruck (1987) Evaluation of SPOT Imagery on Analytical Photogrammetric Instruments. Photogrammetric Engineering & Remote Sensing, 53(9):1223-1230.
Kratky, V. (1988) Rigorous stereophotogrammetric treatment of SPOT images. Colloque International SPOT-1: Utilisation des images, bilan, résultats, Paris, France, pp.1281-1288.
Kraus, K. (1993) Photogrammetry. Vol. 1 Dummlers Verlag. Bonn
Labovitz, M.L. and J.W. Marvin (1986) Precision in Geodetic Correction of TM Data as a Function of the Number, Spatial Distribution, and Succes in Matching of Control Points: A Simulation. Remote Sensing of the Environ., 20:237-252.
Light, D.L. (1986) Satellite Photogrammetry. in Slama, C.C. (ed.) Manual of Photogrammetry. American Society of Photogrammetry, Falls Church, Virginia, pp. 883-977.
Lillesand, T.M. and R.W. Kiefer (2003) Remote Sensing and Image Interpretation. John Wiley & Sons, New York, 784 pp. 5ª edició.
McGlone, J.C. (2004) The ASPRS Manual of Photogrammetry, 5th Edition, 1168 p. (1ª edició 1940, 4ª edició 1986 [Slama]).
Marvin, J.W., M.L. Labovitz and R.E. Wolfe (1987) Derivation of a Fast Algorithm to Account for Distortions Due to Terrain in Earth-Viewing Satellite Sensor Images. IEEE Transactions on Geoscience and RemoteSensing, GE-25 (2):244-251.
Minnesota Planning (1999)Positional AccuracyHandbook:Using theNational Standard for Spatial Data Accuracy to measure and report geographic data quality. Minnesota Planning, St. Paul, MN. 33 p.
Novak, K. (1992) Rectification of Digital Imagery. Photogrammetric Engineering & Remote Sensing, 58(3):339-344.
NSIDC (National Snow and Ice Data Center) (2008) DMSP SSM/I Daily Polar Gridded Brightness Temperatures http://nsidc.org/data/docs/daac/nsidc0001_ssmi_tbs.gd.html. (pàgina visitada 17-Nov-2008)
OGC (2006), Image Geopositioning  proposed Discussion Papers. Open Geospatial Consortium PPT document.
Palà, V. and X. Pons (1995) Incorporation of relief into geometric corrections based on polynomials. Photogrammetric Engineering & Remote Sensing, 61(7):935-944
Padró, J.-C., F.-J. Muñoz, J. Planas and X. Pons (2019) Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International Journal of Applied Earth Observation and Geoinformation, 75:130-140. https://doi.org/10.1016/j.jag.2018.10.018  
Palenichka, R.M. and M.B Zaremba, (2010) Automatic Extraction of Control Points for the Registration of Optical Satellite and LiDAR Images. IEEE Transactions on Geoscience and Remote Sensing, 48(7):2864-2879.
Pons, X., G. Moré and L. Pesquer (2010) “Automatic matching of Landsat image series to high resolution orthorectified imagery” Proceedings of the ESA Living Planet Symposium. CD-ROM  edition. ESA reference document: SP-686.
Pons, X.  and A. Arcalís. (2012) "Diccionari terminològic de teledetecció" Enciclopèdia Catalana i Institut Cartogràfic de Catalunya. Barcelona. 597 pp. També a http://www.termcat.cat/ca/Diccionaris_En_Linia/197/Cerca/
Priebbenow, R. and E. Clerici (1988) Cartographic Applications ofSPOT Imagery. Colloque International SPOT-1: Utilisation des images,bilan, résultats, Paris, France,pp.1189-1194.
Rodríguez, V., P. Gigord, A.C. de Gaujac and P. Munier (1988) Evaluation of the Stereoscopic Accuracy of the SPOT Satellite. Photogrammetric Engineering & Remote Sensing, 54(2):217-221.
Salamonowicz, P.H. (1986) Satellite Observation and Position for Geometric Correction of Scanner Imagery. Photogrammetric Engineering & Remote Sensing, 52(4):491-499.
Schreier, G. (Ed.) (1993) SAR Geocoding: Data and Systems, Wichmann, Karlsruhe. 435 pp.
Shen, X., Liu, B, Li, Q.-Q. (2017) Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines. ISPRS Journal of Photogrammetry and Remote Sensing, 125:125–131
Slama, C.C. (ed.) (1986) Manual of Photogrammetry, 4th edition. American Society of Photogrammetry, Falls Church, Virginia, 1056 pp.
Toutin, P. and P. Cheng (2002) QuickBird - A Milestone for High-Resolution Mapping, Earth Observation Magazine, Abril 2002 http://www.eomonline.com/Common/currentissues/Apr02/cheng.htm (pàgina visitada 10-Nov-2007)
Ulaby, F. T., R. K. Moore, and A.K. Fung (1981) Microwave Remote Sensing: Active and Passive, Vol. I -- Microwave Remote Sensing Fundamentals and Radiometry, Addison-Wesley, Advanced Book Program, Reading, Massachusetts, 456 pp.
Wong, K.W. (1986) Basic Mathematics of Photogrammetry. in Slama, C.C. (ed.)
Manual of Photogrammetry. American Society of Photogrammetry, Falls Church, Virginia, pp. 37-101.

CORRECCIÓ RADIOMÈTRICA D'IMATGES

Bacour, C., F.M. Breon, (2006) "Variability of biome reflectance directional signatures as seen by POLDER" Remote Sens. Environ. 98(1):80-95
Badescu V. (2002) “3D isotropic approximation for solar diffuse irradiance on tilted surfaces” Renewable Energy, 26:221–233.
Baraldi, A., M. Gironda i D. Simonetti  “Operational Two-Stage Stratified Topographic Correction ofSpaceborne Multispectral Imagery Employing an Automatic Spectral-Rule-BasedDecision-Tree Preliminary Classifier” IEEE Transactions on Geoscience and Remote Sensing, 48:112-146.
Baret, F., G. Guyot, J.M. Teres i D. Rigal (1988) "Profil spectral et estimation de la biomasse." Proc. of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing, pp.:93-98. Aussois, France. 18-22 gener. (ESA SP-287, abril 1988).
Bariou, R., D. Lecamus i F. Le Henaff (1985b) "L'atmosphère." Presses Universitaires de Rennes 2. Rennes. 77 pp. Bariou, R., D. Lecamus i F. Le Henaff (1985c) "Le rayonnement electromagnetique." Presses Universitaires de Rennes 2. Rennes.
Bariou, R., D. Lecamus i F. Le Henaff (1985d) "Albedo, Reflectance." Presses Universitaires de Rennes 2. Rennes. 41 pp.
Bariou, R., D. Lecamus i F. Le Henaff (1986) "Corrections radiometriques." Presses Universitaires de Rennes 2, Rennes. pp.
Burkart, A., Cogliati, S., Schickling, A i Rascher, U. (2014) “A Novel UAV-Based Ultra-Light Weight Spectrometer for Field Spectroscopy”. IEEE Sensors Journal, 14(1):62-67.
Cavayas, F. i P.M. Teillet (1988) "Geometric model simulations of conifer canopy reflectance." Proc. of the 3rd International Colloquium on Spectral Signatures of Objects in Remote Sensing, pp.:183-189. Les Arcs, France. 16-20 Des. (ESA SP-247).
Chander, G. i B. Markham(2003) “Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges” IEEE Transactions on Geoscience and Remote Sensing, 41:2674-2677.
Chander, G., D. L. Helder, B. Markham, J. D. Dewald, E. Kaita, K. J. Thome, E. Micijevic, i T. A. Ruggles (2004) “Landsat-5 TM reflective-band absolute radiometric calibration” IEEE Transactions on Geoscience and Remote Sensing, 42:2746-2760.
Chander, G., B. Markham, J. A. Barsi (2007) “Revised Landsat 5 Thematic Mapper radiometric calibration” IEEE Transactions on Geoscienceand Remote Sensing, 4: 490-494.
Chander G., B. Markham,  D. Helder (2009). Summary of current radiometric calibration coefficients for Landsat MSS,TM, ETM+ and EO-1 ALI sensors. Remote Sensing of Environment, 113: 893-903.
Chander G, Haque O, Micijevic E, Barsi J (2010) A procedure for radiometric recalibration of Landsat 5 TM reflective-band data. IEEE Transactions on Geoscience and Remote Sensing, 48(1): 556-574.
Chavez, P.S. (1975) "Atmospheric, Solar, and M.T.F. Corrections for ERTS Digital Imagery." Proc. of Phoenix Meeting. American Society of Photogrammetry.
Chavez, P.S. (1988) "An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data." Remote Sensing of Environment 24:459-479.
Emery, W.; Camps, A. (2017) "Introduction to Satellite Remote Sensing.Atmosphere, Ocean, Land and Cryosphere Applications". Elsevier. 860 pp.
Feng, M.; Huang, C.; Channan, S.; Vermote; E, Masek, J.G. Townshend, J.R.; (2012) "Quality assessment of Landsat surface reflectance products using MODIS data." Computers & Geosciences,38:9-22.
Feng, M., Sexton, J.O., Huang C., Masek, J.G., Vermote, E.F., Gao, F., Narasimhan, R., Channan, S., Wolfe, R.E., Townshend J.R., (2013) “Global surface reflectance products-from Landsat-Assessment using coincident MODIS observations.” Remote Sensing of Environment, 134:276-293.
Feng, M., Huang, C., Channan, S., Vermote, E.F., Masek, J.G., Townshend, J.R. (2012) “Quality assessment of Landsat surface reflectance products using MODIS data” Computers & Geosciences, 38: 9–22.
Forster, B.C. (1984) "Derivation of atmospheric correction procedures for LANDSAT MSS with particular reference to urban data." International Journal of Remote Sensing, 5:799-817.
Freemantle, J. R.,  R. Pu, J. R. Miller (1992)  "Calibrationof Imaging spectrometer Data to Reflectance Using Pseudo-Invariant Features",Proceedings of the 15th Canadian Symposium on Remote Sensing,Toronto,Ontario, June 1-4th, pp. 452-455.
Gao, M, H Gong, WZhao, B Chen, Z Chen, M Shi (2016) “An improved topographic correction model based on Minnaert”, GIScience & Remote Sensing, 53: 247-264
Goel, N.S. (1988) "A perspective on vegetation canopy reflectance models." Proc. of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing, pp.:77-85. Aussois, France. 18-22 gener. (ESA SP-287, abril 1988).
Goel, N.S. i R.L. Thompson (1984) "Inversion of vegetation canopy models for estimating agronomic variables. V. Estimation of leaf area index and average leaf angle using measured canopy reflectances." Remote Sensing of Environment, 16:69-85.
Guanter, L., R. Richter, H. Kaufman (2009) “On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing” International Journal of Remote Sensing, 30:1407-1424.
Gu, D., Gillespie, A., 1998. Topographic normalization of Landsat TM images of forest based on 469 subpixel sun-canopy-sensor geometry. Remote Sens. Environ.: 64, 166–175.
Haque, O., J.A. Barsi, E. Micijevic, D.L. Helder, K.J. Thome, D.Aaron i J.S. Czapla-Myers (2012) " Landsat-7 ETM+: 12 Years On-Orbit Reflective-Band Radiometric Performance." IEEE Transactions on Geoscience and Remote Sensing, 50(5):2056-2062.
Holben, B.N. i C.O. Justice (1980) "The topographic effect on spectral response from nadir-pointing sensors." Photogrammetric Engineering and Remote Sensing, 46:1191-1200.
Horn, B.K.P. i R.W. Sjoberg (1979) "Calculating the reflectance map." Applied optics, 11:1770-1779.
Hadjimitsis, D.G.; Clayton, C.R.I.; Retalis, A. (2009). “The use of selected Pseudoinvariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery”. International Journalof Applied Earth Observation Geoinformation, 11:192-200.
Kotchenova, S.Y., E.F. Vermote, R. Matarresei F.K. Klemm (2006) " Validation of avector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance." Applied optics, 45(26):6762-6774.
Lenot, X., Achard, V. i Poutier, L. (2009) “SIERRA: A new approach to atmospheric and topographic corrections for hyperspectral imagery”. Remote Sensing of Environment 113:1664–1677
Li, F., D.L.B. Jupp, M. Thankappan, L. Lymburner, N. Mueller, A. Lewis, A. Held (2012) "A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain" Remote Sensing of Environment, 124:756–770
Liang, S., H. Fangi  M. Chen, (2001), Atmospheric Correction of Landsat ETM+ Land Surface Imagery—Part I: Methods, IEEE Transactions on Geoscience and Remote Sensing, 39:2490-2498.
Liang, S., H. Fang, J.T. Morisette, M. Chen, C. J. Shuey, C.L. Walthall, i C.S.T. Daughtry (2002) Atmospheric Correction of Landsat ETM+ Land Surface Imagery—Part II: Validation and Applications, IEEE Transactions on Geoscience and Remote Sensing, 40(12):2736-2746.
López, M.J. i V. Caselles (1987) "Un método alternativo de corrección atmosférica." Comunicaciones de la 2ª Renunión Nacional del Grupo de Trabajo en Teledetección, pp.:165-175. València. 17-18 desembre.
Loew, A., R. Bennartz, F. Fell, A. Lattanzio, M. Doutriaux-Boucher, i J. Schulz (2016) “A database of global reference sites to support validation of satellite surface albedo datasets (SAVS 1.0)” Earth Syst. Sci. Data, 8:425-438.
McCoy, R.M. (2005) “Field Methods in Remote Sensing”. The Guilford Press, New York. 159 pp.
Markham, B. L. i J. L. Barker (1986) “Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectance and at-satellite temperatures” EOSAT Landsat Technical Notes 1:3-8.
Markham, B.L. i J.L. Barker (1987) "Thematic Mapper bandpass solar exoatmospheric irradiances." InternationalJournal of Remote Sensing, 8:517-523.
Markham, B.;Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar,S.; Czapla-Myers, J.; Mishra, N.; Helder, D. (2014). “Landsat-8 Operational Land Imager Radiometric Calibration ad Stability.” Remote Sensing, 6:12275-12308;
Melià, J. (1991) "Fundamentos físicos de la teledetección: leyes y principios básicos."  in Gandía, S. i J. Melià (eds.) "La teledetección en el seguimiento de los fenómenos naturales. Recursos renovables: Agricultura." Departament de Termodinàmica. Universitat de València. pp.:51-83.
Minnaert, M. (1941) “The reciprocity principle in lunar photometry” Astrophysics Journal 93:403-410.
Mobley, C.D. (1999) "Estimation of the remote-sensing reflectance from above-surface measurements" Applied Optics, 38(36):7442-7455.
Moran, M.S., R.D. Jackson, P.N. Slater i P.M. Teillet (1992) "Evaluation of Simplified Procedures for Retrieval of Land Surface Reflectance Factors from Satellite Sensor Output." Remote Sensing of Environment, 41:169-184.
Mueller, J.L., G.S. Fargion i C.R. McClain (Eds) (2003) "Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols." Goddard Space Flight Space Center Greenbelt, Maryland. 84 pp.
Naugle, B.I. i J.D. Lashlee (1992) "Alleviating Topographic Influences on Land-Cover Classifications for Mobility and Combat Modeling." Photogrammetric Engineering and Remote Sensing, 58(8):1217-1221.
Neville, R.A., Sun, L. i Staenz, K. (2008) " Spectral calibration of imaging spectrometers by atmospheric absorption feature matching." Can. J. Remote Sens., 34(1):S29-S42.
Nicodemus, F.E., J.C. Richmond, J.J. Hsia, I.W. Ginsberg i T. Limperis (1977) “Geometrical Considerations and Nomenclature for Reflectance.” U.S. Department of Commerce. National Bureau of Standards. Washington.
Padró,J.C., PonsX., Aragonés D., Díaz-DelgadoR., García D., Bustamante J., Pesquer L.,Domingo-Marimon C., González-Guerrero O., Cristóbal J., Doktor D. i Lange M. (2017) “Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy.” Remote Sensing, 9(12):1319. http://dx.doi.org/10.3390/rs9121319
Padró, J.C., Muñoz F.J., Ávila L.A., Pesquer L. i Pons X. (2018) “Radiometric Correction of Landsat-8 and Sentinel-2A Scenes Using Drone Imagery in Synergy with Field Spectroradiometry”. Remote Sensing, 10(11):1687. https://doi.org/10.3390/rs10111687
Paolini, L, F. Grings, J.A. Sobrino, J. Jiménez Muñoz, H. Karszenbaum (2006) “Radiometric correction effects in Landsat multi-date/multi-sensor change detection studies.” International Journal of Remote Sensing, 27(4):685-704
Pons, X. i L. Solé (1994) "A Simple Radiometric Correction Model to Improve Automatic Mapping of Vegetation from Multispectral Satellite Data." Remote Sensing of Environment, 47:1-14.
Pons X, Cristóbal J, Pesquer L, Moré G, González O (2010) “Fully automated and coherent radiometric (atm+top) correction of Landsat tm images trough pseudoinvariant areas” In: Proc. 2010 ESA Living Planet Symposium, ESA, Bergen, Norway.
Pons, X. i Arcalís, A. (2012) "Diccionari terminològic de teledetecció" Enciclopèdia Catalana i Institut Cartogràfic de Catalunya. Barcelona. 597 pp.
Pons, X., L. Pesquer, J. Cristóbal i O. González-Guerrero (2014) “Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images”, International Journal of Applied Earth Observation and Geoinformation, 33: 243-254,
Price, J.C. (1987) "Calibration of Satellite Radiometers andthe Comparison of Vegetation Indices." Remote Sensingof Environment, 21:15-27.
Price, J.C. (1988)"An Update on Visible and Near Infrared Calibration of Satellite Instruments." Remote Sensing of Environment, 24:419-422.
Proy, C. i C. Leprieur (1985) "Influence de la topographie et de l'atmosphère sur les mesures radiometriques en region montagneuse - Test d'un model d'inversion du signal sur des données TM." Proc. of the 3rd International Colloquium on Spectral Signatures of Objects in Remote Sensing, pp.:191-197. Les Arcs, France. 16-20 Des. (ESA SP-247).
Proy, C., D. Tanré i P.Y. Deschamps (1989) "Evaluation of Topographic Effects in Remotely Sensed Data." Remote Sensing of the Environment, 30:21-32.
Riaño, D., E. Chuvieco, J. Salas, I. Aguado (2003) “Assessment of different topographic corrections in Landsat-TM Data for mapping vegetation types” IEEE Transactions on Geoscience and Remote Sensing 41(5):1056-1061.
Richter, R., F. Lehmann i S. Tischler (1991) "Corrections of Atmospheric and Topographic Effects in Landsat TM Images." Proc. of the 5th Internationa Colloquium on Physical Measurements and Signatures in Remote Sensing, pp.:69-71. Courchevel, France. 14-18 Gener. (ESA SP-319).
Salvador, R., X. Pons i F. Diego (1996) “Validación de un método de corrección radiométrica sobre diferentes áreas montañosas”. Revista de Teledetección, 7:21-25
Saunier, S. i Y. Rodríguez (2006). “Landsat Product Radiometric calibration. Technical note” ESA. Available in http://earth.esa.int/pub/ESA_DOC/GAEL-calibration-proceeding.pdf
Schaepman-Struba, G., M.E. Schaepmanc, T.H. Painterd, S. Dangelb i J.V. Martonchik (2006) "Reflectance quantities in optical remote sensing-definitions and case studies" Remote Sens.Environ. 103 (1): 27-42.
Schroeder, T.A., W.B. Cohenb, C. Songc, M.J. Cantyd i Zhiqiang Yang (2006) "Radiometric correction ofmulti-temporal Landsat data for characterization of early successional forest patterns in western Oregon" Remote Sens. Environ 103(1):16-26
Slater, P.N. (1985) "Radiometric considerations in Remote Sensing." Proceedings of the IEEE, 73:997-1011.
Smith, J.A., T.L. Lin i K.J. Ranson, (1980) "The Lambertian Assumption and Landsat Data" (Technical Note), Photogram. Eng. and Remote Sensing, 46(9):1183-1189.
Smith, G.M. and Milton, E.J., (1999) "The use of the empirical line method to calibrate remotely sensed data to reflectance" (Technical Note), International Journal of Remote Sensing, 20(13) : 2653 -2662.
Soenen, S.A., Peddle, D.R., Coburn, C.A., (2005) “SCS + C: a modified sun-canopy-sensor topographic correction in forested terrain” IEEE Trans. Geosci. Remote Sens. 43 (9): 2148-2159.
Song, C, CE Woodcock, KC Seto, MP Lenney,  SA Macomber (2001) “Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?” Remote Sens. of Env. 75(2): 230-244.
Teillet, P.M., Guindon, B., Goodenough, D.G. (1982). On the slope-aspect correction of multispectral scanner data. Canad. J. Remote Sens. 8:84–106.
Teillet, P. M. i G. Fedosejevs (1995) “On the dark target approach to atmospheric correction of remotely sensed data” Canadian Journal of remote Sensing, 21:374-387.
United States Geological Survey. Product guide: Landsat climate data record (CDR). Surface reflectance. Department of the Interior U.S. Geological Survey. Version 3.4, December 2013. The Internet: http://landsat.usgs.gov/documents/cdr_sr_product_guide.pdf (accessed on 2-Jan-2014).
United States Geological Survey. (2016). “Provisional Landsat 8 Surface Reflectance Code (LaSRC) product. Version 3.0” Department of the interior.
Vanonckelen, S., S. Lhermitte, A. Van Rompaey (2013). “The effect of atmospheric and topographic correction methods on land cover classification accuracy” International Journal of Applied Earth Observation and Geoinformation, 24:9-21
Vermote, E.,D. Tanre,J.L. Deuze, M.Herman and J.J. Morcrette (1997), Second Simulation of the Satellite Signal in the Solar Spectrum (6S) : an overview, IEEE Transactions on Geoscience and Remote Sensing, 35(3) 675 - 686. El programa 6S pot ser descarregat de http://6s.ltdri.org/ (validat el 10-11-2016).
Vermote, E.; Justice, C.; Claverie, M.; Franch, B. (2016). “Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product.” Remote Sensing of Environment, 185:46-56.
Vidal-Macua JJ, Zabala A, Ninyerola M, Pons X (2017) “Developing spatially and thematically detailed backdated maps for land cover studies”. International Journal of Digital Earth 10(2): 175-206. http://dx.doi.org/10.1080/17538947.2016.1213320
Vicente-Serrano, S., F. Pérez-Cabello i T. Lasanta (2008) “Assessment of radiometric correction techniques in analyzing vegetations variability and change using time series of Landsat images” Remote Sensing of Environment, 112:3916-3934.
Whitworth, Malcolm (1997) "A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain" IEEE Trans. Geosc. Remote Sens., Vol. 35, No. 3, pp. 708-717
Yang, C. i A. Vidal (1990) "Combination of Digital Elevation Models with SPOT-1HRV Multispectral Imagery for Reflectance Factor Mapping." Remote Sensing of Environment, 32:35-45.
Zhang, Z., G. He i  X. Wang (2010) “A practical DOS model-based atmospheric correction algorithm” International Journal of Remote Sensing, 2837-2852.
Zhang, Z, G He, X Zhang, T Long, G Wang i M. Wang (2017) “A coupled atmospheric and topographic correction algorithm for remotely sensed satellite imagery over mountainous terrain” GIScience & Remote Sensing, https://doi.org/10.1080/15481603.2017.1382066


Programari

MiraMon, ArcGIS, QGIS, MATLAP, ENVI, R, SNAP, Office Microsoft