Logo UAB
2023/2024

Càlcul Vectorial

Codi: 106041 Crèdits: 6
Titulació Tipus Curs Semestre
2500897 Enginyeria Química FB 2 1

Professor/a de contacte

Nom:
Laura Prat Baiget
Correu electrònic:
laura.prat@uab.cat

Idiomes dels grups

Podeu accedir-hi des d'aquest enllaç. Per consultar l'idioma us caldrà introduir el CODI de l'assignatura. Tingueu en compte que la informació és provisional fins a 30 de novembre de 2023.

Equip docent

Francisco Javier Mora Gine

Prerequisits

L'assignatura no té prerequisits oficials, però es presuposa que l'alumne ha cursat i aprovat les Matemàtiques de primer curs. És indispensable saber derivar i integrar en una variable.


Objectius

És una assignatura bàsica on s'introdueix una eina de les matemàtiques molt important en la resolució de problemes reals que apareixen en les enginyeries: l'anàlisi vectorial.

 Es pretén que l'alumne

  1. sàpiga identificar corbes i superfícies a l'espai i relacionar-les amb les equacions que les descriuen.

  2. entengui el significat geomètric dels conceptes bàsics d'un camp vectorial.

  3. aprengui a utilitzar les eines del càlcul vectorial per identificar i calcular magnituds físiques.

  4. entengui i sàpiga utilitzar els teoremes de  l'anàlisi vectorial i coneguiel seu paper en la formulació d'algunes teories físiques.


Competències

  • Aplicar coneixements rellevants de les ciències bàsiques, com són les matemàtiques, la química, la física i la biologia, i també principis d'economia, bioquímica, estadística i ciència de materials, per comprendre, descriure i resoldre problemes típics de l'enginyeria química.
  • Hàbits de treball personal
  • Treball en equip

Resultats d'aprenentatge

  1. Aplicar els mètodes de resolució d'equacions diferencials per a l'anàlisi de fenòmens deterministes.
  2. Aplicar, a la descripció i al càlcul de magnituds, els mètodes i els conceptes bàsics del càlcul diferencial i integral en una variable.
  3. Prendre decisions pròpies.
  4. Treballar cooperativament.

Continguts

  Càlcul vectorial.

1. Funcions vectorials. Corbes a l'espai. Vector tangent i normal.

2. Funcions de diverses variables. Corbes i superfícies de nivell. Derivades parcials. Gradients i derivades direccionals. Regla de la cadena. Rectes i plans tangents. Valors màxims i mínims.

3. Integració múltiple. Integrals dobles sobre dominis elementals. Integrals iterades. Integrals triples. Aplicacions de les integrals dobles i triples. Canvi de variables.

4. Integrals de línia i integrals de superfície. Camps vectorials. circulació i flux. Rotacional i divergència. Teorema de Green. Teorema de la divergència.

 

 


Metodologia

En el procés d'aprenentatge de la matèria és fonamental el treball de l'alumne, qui en tot moment disposarà de l'ajut del professor.

Les hores presencials es distribueixen en:

Classes de Teoria: El professor introdueix els conceptes bàsics corresponents a la matèria de l'assignatura mostrant exemples de la seva aplicació. L'alumne haurà de complementar les explicacions dels professors amb l'estudi personal.

Classes de Problemes: Es treballa la comprensió i aplicació dels conceptes i eines introduits a teoria, amb la realització d'exercicis. L'alumne disposarà de llistes de problemes, una part dels quals es resoldran a les classes de problemes. La resta els haurà de resoldre l'alumne com a part del seu treball autònom.

Seminaris: S'aprofundeix en la comprensió de la matèria amb el treball dels alumnes en grup sobre problemes pràctics de l'assignatura. En algunes sessions de seminari es podran fer pràctiques amb ordinador.

Nota: es reservaran 15 minuts d'una classe, dins del calendari establert pel centre/titulació, per a la complementació per part de l'alumnat de les enquestes d'avaluació de l'actuació del professorat i d'avaluació de l'assignatura/mòdul.


Activitats formatives

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classes de Teoria 30 1,2 1, 2
Classes de problemes 15 0,6 1, 2
Tipus: Supervisades      
Classes de Seminaris 5 0,2 1, 2, 3, 4
Tipus: Autònomes      
Estudi 30 1,2 1, 2, 3
Resolució de problemes 64,5 2,58 1, 2, 3

Avaluació

L'avaluació continuada de l'assignatura  es farà a partir de tres qualificacions:

a) Dues proves escrites individuals de teoria i/o problemes, una sobre els continguts de la part A, amb qualificació P1, i una altra sobre la part B del temari del curs, amb qualificació P2. Les qualificacions P1 i P2 són sobre 10.

b) Una nota dels Seminaris. Amb una qualificació S (sobre 10). 

Les proves b)  són  obligatòries i no recuperables. 

Si s'han fet els dos examens parcials, es genera una qualificació Q1=0,2·S+0,4·(P1+P2). Si Q1 és 5 o superior, la qualificació final és Q1.

Per als alumnes amb Q1 inferior a 5, i que hagin fet les proves b), al final del semestre hi haurà una prova de recuperació de tot el curs, amb qualificació R.

La qualificació final serà Q2=0,20·S+màx{0,4·(P1+P2),0,8·R}


Activitats d'avaluació continuada

Títol Pes Hores ECTS Resultats d'aprenentatge
Avaluació dels seminaris 20% 1,5 0,06 1, 2, 3, 4
Examen parcial de teoria i/o problemes 40% 2 0,08 1, 2, 3
Examen parcial de teoria i/o problemes 40% 2 0,08 1, 2, 3

Bibliografia

Bibliografia bàsica:

S. L. Salas, E. Hille. Cálculo de una y varias variables. Ed. Reverté, 1994.

Cálculo Vectorial.J.E. Marsden y A.J.Tromba, Addison Wesley Longman

 

 


Programari

No n'hi ha cap de previst.