Degree | Type | Year | Semester |
---|---|---|---|
2500097 Physics | OT | 4 | 1 |
You can check it through this link. To consult the language you will need to enter the CODE of the subject. Please note that this information is provisional until 30 November 2023.
There are no official prerequisites. However, it is assumed that students have knowledge in Thermodynamics and notions of Statistical Mechanics, especially the concepts and methods of ensemble theory, and basic knowledge of quantum mechanics and electromagnetism.
1. Stochastic processes
1.1. Introduction. Brownian Motion
1.2. Random Walks
1.3. Langevin equation
1.4. Fokker-Planck equation
1.5. Brownian motors
2. Summary of statistical mechanics
2.1 Ensemble theory. Postulates
2.2 Microcanonical ensemble
2.3 Canonical ensemble.
2.4 Continuos and discrete energy spectra.
2.5 Classical and quantum limits. Thermal wavelength
2.6 Maxwell-Boltzmann statistics
2.7 Theorem of equipartition of energy
3. Ideal gas of diatomic molecules
3.1 The problem of heat capacity in gases
3.2 Internal degrees of freedom
3.3 Contribution of each degree of freedom to heat capacity
3.4 Poliatomic molecules
4. Magnetic systems
4.1 Spin ½ systems
4.2 Quantum paramagnetism
4.3 Classical paramagnetism
4.4 Superparamagnetism
5. Biological systems
5.1 DNA denaturation
5.2 Biological membranes
5.3 Saturation curve of myoglobin. Langmuir isotherm
6. Interacting systems
6.1 Solid, liquids, gases.
6.2 Magnetic systems. Ferro-paramagnetic transition
6.3 Weiss model
6.4 Landau model
6.5 Ising model
6.6 Critical points. Universality
6.7 Monte Carlo methods. Metropolis algorithm
7. Ideal quantum gas
7.1 Distinguishable and indistinguishable particles
7.2 Microstates in quantum statistical mechanics
7.3 Calculation of grand canonic partition functions in an ideal gas
7.4 Quantum Statistics: Bose-Einstein and Fermi-Dirac Statistics
7.5 Bosons and fermions ideal gases
8. Bosons and fermions ideal gases
8.1 Bosons gases.
Photons. Black-body radiation
Phonons. Heat capacity of the crystal lattice
Bose-Einstein condensation
8.2 Fermion gases.
Heat capacity of electrons
Degeneration pressure of fermions
9. Elementary kinetic theory of gases
9.1. Gas diluted in equilibrium
9.2. Transport coefficients
Thermal conductivity of the crystal lattice and electrons
Master classes
The teacher will explain the content of the syllabus with the support of audiovisual material that will be available to students in the Virtual Campus web in advance, at the beginning of each course topic. It is recommended that students have this material at hand in order to follow the classes more easily. Classes combine the use of slides with developments on the board. Student participation in class will be promoted. The teacher will solve some practical examples to illustrate the theory.
Problem Classes
The teacher will solve selected problems from the list that they will find on the Virtual Campus and students will solve in class some problems in groups. In previously established dates, students in groups of 3 students will deliver resolved problems (one delivery per group).
Some sessions will be devoted to the use of simulation tools. Students will make a simple code and analyze simulation results.
If a group believes that there is a participant who has not worked reasonably equitable, it can be expelled from the group.
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
Exercises classes | 16 | 0.64 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 12, 15, 22, 21, 20, 17, 16, 18, 24, 30, 19, 25, 26, 27, 29, 28, 31, 32, 34, 33, 36, 35 |
Theory Classes | 33 | 1.32 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 14, 15, 22, 21, 20, 17, 16, 18, 24, 23, 30, 19, 25, 26, 27, 29, 31, 32, 34, 33, 35 |
Type: Supervised | |||
Delivery activities | 10 | 0.4 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 12, 14, 15, 22, 21, 20, 17, 16, 18, 24, 23, 30, 19, 25, 26, 27, 28, 31, 32, 34, 33, 36, 37, 35 |
Type: Autonomous | |||
Group work | 25 | 1 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 12, 15, 21, 20, 17, 16, 18, 24, 30, 19, 25, 26, 27, 31, 32, 34, 33, 37, 35 |
Personal work | 57 | 2.28 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 12, 14, 15, 22, 21, 20, 17, 16, 18, 24, 23, 30, 19, 25, 26, 27, 28, 31, 32, 34, 33, 36, 37, 35 |
1. Group work. It consists of solving selected exercises (in groups of 3 students) and some numerical simulations (in groups of 2 students). The score in this evaluation group represents 25% of the final (individual) grade
2. Individual assesment: this part assess individually scientific and technical knowledge of the subject achieved by the student, as well as its capacity for analysis, synthesis and critical reasoning. It will consist of:
Partial exams: 75%.
Resit exam: 75%. It includes all the syllabus of the course (not each partial separately).
Important: In order to average the grade of the exam with the other 25%, the average score of the exams must be greater than or equal to 4 in a scale of 10.
Resit exam: in order to attend the retake exam the student must have attended the two partial exams.
Those students who pass the partial tests can attend the resit exam to improve the grade. If the score got in the resit exam is up to 1.5 points lower than the average partials score, it is kept the average partials score (unless it is less than 4). If you think you will not upgrade the score, you may not deliver the exam.
Not Assessable: The Not Assessable qualification will be obtained if the student does not attend any exam.
UNIQUE ASSESSMENT
Students who have accepted the single assessment modality will have to take a final test which will consist of a written exam that including problem solving and some theoretical questions. This test will take place on the same day as the second continuous assessment exam. Upon completion, students will deliver all deliverables and simulation reports.
The final grade is obtained in the same way as the continuous assessment: the exam weighs 75% of the final grade and the deliveries 25%.
Important: To average with the other 25% of the grade, the score of the exam must be 4 out of 10 or higher.
If the exam grade does not reach 4 or the final grade does not reach 5, the student has another opportunity to pass the subject through the recovery exam that will be held on the date set by the coordination of the qualification. The same recovery system will be applied as for the continuous assessment: the part of the grade corresponding to theory and problems (75%) can be recovered, the deliveries do not.
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
Exercises and projects delivery | 25% | 0 | 0 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 12, 14, 15, 22, 21, 20, 17, 16, 18, 24, 23, 30, 19, 25, 26, 27, 29, 28, 31, 32, 34, 33, 36, 37, 35 |
Partial Exams | 75% | 6 | 0.24 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 12, 14, 15, 22, 21, 20, 17, 16, 18, 24, 23, 30, 19, 25, 26, 27, 31, 32, 34, 33, 36, 35 |
Resit Exam | 75% | 3 | 0.12 | 3, 4, 5, 1, 2, 13, 7, 9, 6, 8, 10, 11, 12, 14, 15, 22, 21, 20, 17, 16, 18, 24, 23, 30, 19, 25, 26, 27, 31, 32, 34, 33, 36, 35 |
Basic
- R.K. Pathria, Statistical Mechanics, (3rd Ed), Academic Press, 2011.
- K. Huang, Introduction to statistical physics,Boca Raton, CRC Press, 2001
- F. Reif, Física estadística. Barcelona, Reverté, 1969
- J. Ortín, J.M. Sancho, Curso de Física Estadística, Barcelona, Publicacions i Edicions de la Universitat de Barcelona, cop. 2006
Advanced
- D. A. McQuarrie, Statistical Mechanics. University Science Books, cop. 2000.
- D.J. Amit and Y. Verbin, Statistical Physics: An introductory course. Singapore, World Scientific, 1995.
- D. Chandler, Introduction to Modern Statistical mechanics. Oxford, New York, 1987
- C. Fernandez, J.M. Rodríguez Parrondo, 100 problemas de Física Estadística, Madrid, Alianza, 1996
- R. Kubo. Statistical Mechanics: an advanced course with problems and solutions. Amsterdam, North-Holland, 1990.
- K.A. Dill and S. Bromberg. Molecular driving forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience. Garland Science; 2nd edition, 2010.
Specialized articles and Web links
You will find them in the Virtual Campus
There is no specific software for the subject