Degree | Type | Year | Semester |
---|---|---|---|
4313815 Research in Education | OT | 0 | 2 |
None
This module tackles some of the main transversal processes related to science and mathematics education, such as practical work, school projects, ICTs for learning and communication in schools, problem solving and assessment. Having into account learnings from previous modules, the focus of this one will be on the design of context-based educational instruction that facilitates the integration of STEM areas. Emphasis will be also put on how to evaluate teaching proposals taking into consideration a design-based research approach. The following contents will be discussed:
The training activity will be developed based on the following dynamics:
Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.
Title | Hours | ECTS | Learning Outcomes |
---|---|---|---|
Type: Directed | |||
Classroom practices | 18 | 0.72 | |
Lectures | 18 | 0.72 | 21, 22, 8, 5, 4, 7, 16, 6, 10, 9, 11, 12, 23, 14, 15, 1, 18, 17, 27, 19, 25 |
Type: Supervised | |||
Analysis and group discussion of papers | 16 | 0.64 | |
Tutorials | 10 | 0.4 | |
Type: Autonomous | |||
Production of papers / group work | 60 | 2.4 | |
Reading papers | 28 | 1.12 |
To access the assessment, 80% of the sessions of the module will need attendance.
Students' participation and involvement will be valued in the activities proposed and in the development of the work dynamics.
Two evaluation activities are proposed:
Title | Weighting | Hours | ECTS | Learning Outcomes |
---|---|---|---|---|
Evaluation of an interdisciplinary project | 45% | 0 | 0 | 21, 22, 8, 5, 4, 7, 16, 6, 10, 9, 11, 12, 23, 14, 15, 13, 20, 2, 3, 1, 18, 17, 27, 19, 24, 25 |
Individual reflection document | 45% | 0 | 0 | 21, 22, 8, 5, 4, 7, 16, 6, 10, 9, 11, 12, 23, 14, 15, 13, 20, 2, 3, 1, 18, 17, 26, 27, 19 |
Participation | 10% | 0 | 0 | 25 |
Abrahams, I. & Millar, R. (2008). Does Practical Work Really Work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30 (14), 1945 - 1969.
Albarracín, L., & Gorgorió, N. (2013). Problemas de estimación de grandes cantidades: modelización e influencia del contexto. Revista latinoamericana de investigación en matemática educativa, 16(3), 289-315.
Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educationa lStudies in Mathematics, 86(1), 79-96.
Aymerich, À. & Albarracín, L. (2016). Complejidad en el proceso de modelización de una tarea estadística. In Modelling in Science Education and Learning, 9(1), 5-24.
Badillo, E. y Fernández, C. (2018). Oportunidades que emergen de la relación entre perspectivas: Análisis del conocimiento y/o competencia docente. L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 66-80). Gijón: SEIEM.
Badillo, E.; Figueiras, L.; Font, V.; Martínez, M. (2013). Visualización gráfica y análisis comparativo de la práctica matemática en el aula. Enseñanza de las Ciencias, 31(3), 207-225.
Caamaño, A. (cr.) (2011). Didáctica de la Física y la Química. Barcelona: Ed. Graó.
Blomhøj, M. (2004). Mathematical Modelling: A Theory for Practice. In B. Clarke et al. (Eds.), International Perspectives on Learning and Teaching Mathematics (pp. 145-159). Gotemburgo, Suecia: National Center forMathematics Education.
Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Vol. 38 (2), 86-95. Disponible a:https://www.researchgate.net/publication/225708294_Theoretical_and_empirical_differentiations_of_phases_in_the_modeling_process_Zentralblatt_fr_Didaktik_der_Mathematik_382_86-95
Gamboa, G., Badillo, E., Ribeiro, M., Montes, M. y Sánchez-Matamoros, G. (2020). The role of teachers’knowledge in the use of learning opportunities triggered by mathematical connections. En, S. Zehetmeier, D. Potari y M. Ribeiro. Professional Development and Knowledge of Mathematics Teachers (pp. 24-43). New York: Routledge.
García-Honrado, I., Clemente, F., Vanegas, Y., Badillo, E. y Fortuny, J. M. (2018). Análisis de la progresión de aprendizaje de una futura maestra. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 231-240). Gijón: SEIEM.
Hernández, M. I. & Couso, D. (2016). Comunicando ciencia en talleres experimentales para estudiantes de educación primaria y secundaria: Aportaciones de la didáctica de las ciencias experimentales al diseño, implementación y evaluación de talleres de comunicación científica. UAB. Disponible en: < https://ddd.uab.cat/pub/llibres/2016/149938/Guia_talleres_Fecyt_revisada.pdf>
Hernández, M.I. (2018). Com a docents de ciències, avaluem la nostra pràctica? Revista Ciències, 36, 20-29.
Hernández-Sabaté, A., Joanpere, M., Gorgorió, N., & Albarracín, L. (2015). Mathematics learningopportunities when playing a tower defense game. International Journal of Serious Games, 2(4), 57-71.
Hofstein, A., Lunetta, V.N. (2004). The Laboratory in Science Education: Foundations for theTwenty-First Century. Science Education, 88, 1.
Klein, P.D; Kirkpatrick, L.C. (2010). Multimodal Literacies in Science: Currency, Coherence and Focus. Research in Science Education, 40, 87-92.
Lin, F-L., y Rowland, T. (2016). Pre-Service and In-Service Mathematics Teachers’ Knowledge and Professional Development. En, A. Gutierrez, G. C. Leder, y P. Boero, The Second Handbook of Research on the Psychology of Mathematics Education (pp. 483-520). Rotterdam, The Netherlands: Sense Publishers.
Maaß, K. (2006). What are modelling competencies? ZDM Vol. 38 (2), 113 – 141. https://pdfs.semanticscholar.org/0303/d30d25016a810887169b23259d7aa83683d1.pdf
Millar, R. (2009). Analysing practical activities to assess and improve effectiveness: The Practical Activity Analysis Inventory (PAAI). Centre for Innovation and Research in Science Education, Department of Educational Studies, University of York, Heslington, York.
Mortimer, E.F., Scott, P.H. (2003). Meaning Making in Secondary. Science Classrooms. Philadelphia, USA: Open University Press.
Niss, M. & Højgaard, T. (2011). Competencies and Mathematical Learning Ideas and inspiration for the development of mathematics teaching and learning in Denmark. KOM project. IMFUFA, Roskilde University, Denmark.
Osborne, J. (2014). Teaching scientific practices: meeting the challenge of change. Journal of Science Teacher Education, 25, 177 – 196.
Pintó, R. Couso, D. Hernandez, M. (2010). An inquiry-oriented approach for making the best use of ICT in the classroom. elearning papers, 20.
Polya, G. (1965). Cómo plantear y resolver problemas.Ed. Trillas. México.
Ponte, J. P., & Chapman, O. (2006). Mathematics teachers' knowledge and practices. In A. Gutierrez & P. Boero (Eds.), Handbook of reaserch on the psychology of mathematics education: Past, present and future (pp. 461-494). Roterdham: Sense.
Rico, L., Gómez, P. y Cañadas, M. (2014). Formación Inicial en educación matemática de los maestros de primaria en España, 1991-2010. Revista de Educación, 363, 35-59.
Rico, L., Gómez, P., Cañadas, M. C. (2009). Estudio TEDS-M: estudio internacional sobre la formación inicial del profesorado de matemáticas. En M.J. González, M.T. González & J. Murillo (Eds.), Investigación en Educación Matemática XIII (pp. 425- 434). Santander: SEIEM.
Roca, M.; Márquez, C.; Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31, 1, 95-114.
Sala, G. & Font, V. (2019). Papel de la modelización en una experiencia de enseñanza de las matemáticas basada en indagación. Avances de Investigación en Educación Matemática, num. 16, 73-85. DOI: https://doi.org/10.35763/aiem.v0i16.283
Sala, G., Barquero, B., Barajas, M., & Font, V. (2016). Què amaguen aquestes ruïnes? Disseny d’una unitat didàctica interdisciplinary per una plataforma virtual. Revista del Congrés Internacional de Docència Universitària i Innovació (CIDUI), núm. 3 (2016).
Sanmartí, N. (2016). Trabajo por proyectos: ¿filosofía o metodología? Cuadernos dePedagogía, 472.
Sanmartí, N., & Márquez, C. (2017). Aprendizaje de las ciencias basado en proyectos: del contexto a la acción. Ápice. Revista de educación científica, 1(1), 3-16.
Sanmartí, N. (2020). Avaluar és aprendre. Xarxa Competències bàsiques. Generalitat de Catalumya. Departament d’Educació.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). New York: MacMillan.
Shulman, L. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, (15), 2, 4-14.
Scott, P., Ametller, J. (2006). Teaching science in a meaning fulway: striking a balance between opening up and closing down classroom talk. School Science Review, 88(324), 77-83.
Sol, M., Giménez, J., Rosich, N. (2011). Trayectorias modelizadoras en la ESO. Modelling in Science Education and Learning, [S.l.], v. 4, p. 329-343, Disponible en: <http://polipapers.upv.es/index.php/MSEL/article/view/3100>.
Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation, California.
No specific software is required