This version of the course guide is provisional until the period for editing the new course guides ends.

Logo UAB
2022/2023

Context in Research into the Teaching and Learning of Science and Mathematics

Code: 43930 ECTS Credits: 6
Degree Type Year Semester
4313815 Research in Education OT 0 2

Contact

Name:
Conxita Marquez Bargallo
Email:
conxita.marquez@uab.cat

Use of Languages

Principal working language:
catalan (cat)

Other comments on languages

Students will be able to use their own language through oral and written practices. The visual presentations, the teaching instruments and materials, and readings will be in catalan, spanish or english

Teachers

Neus SanmartÝ Puig
Genaro Gamboa Rojas
Carme Grimalt Alvaro
Gemma Sala SebastiÓ

Prerequisites

None

Objectives and Contextualisation

This module tackles some of the main transversal processes related to science and mathematics education, such as practical work, school projects, ICTs for learning and communication in schools, problem solving and assessment. Having into account learnings from previous modules, the focus of this one will be on the design of context-based educational instruction that facilitates the integration of STEM areas. Emphasis will be also put on how to evaluate teaching proposals taking into consideration a design-based research approach. The following contents will be discussed:

  • Contexts for integrating science and maths teaching
  • Learning to solve mathematical problems in context
  • Inquiry and practical work to teach context-based science 
  • Affordances and constraints of the use of ICTs in contextualised projects
  • Teachers' pedagogical content knowledge in relation with science and maths teaching
  • Assessment as a tool to promote contextualised science and maths teaching

Competences

  • Analyse data according to its nature and present results in accorance with the research proposals.
  • Collect research data coherently in accordance with the chosen method.
  • Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.
  • Communicate the research results, knowledge acquired and the implications for practice, and adapt the register to the public and formal protocols.
  • Continue the learning process, to a large extent autonomously.
  • Develop professional values including ethics in educational research, in particular with respect to diversity of opinion and ways of being and doing.
  • Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
  • Plan research according to practice-related problems, taking into account theoretical advances in the field of knowledge.
  • Recognise and relate the theoretical, empirical and social aspecys of the specific field of research.
  • Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
  • Use ICT in the research process, information search and management, data analysis and the dissemination and communication of results.
  • Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
  • Work in teams and with teams in the same or interdisciplinary fields.

Learning Outcomes

  1. Collect data to allow an understanding of forms of communication and interaction in the classroom.
  2. Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.
  3. Continue the learning process, to a large extent autonomously.
  4. Decide on the information and the subjects involved in the study.
  5. Define appropriate tools for analysing the nature of the data in context.
  6. Design research pertinent to problems related to science and mathematics education in context.
  7. Design strategies for collecting information.
  8. Develop professional values including ethics in educational research, in particular with respect to diversity of opinion and ways of being and doing.
  9. Identify and analyse the different theoretical frameworks of reference that guide research in the context of science and mathematics education.
  10. Identify in practice problems related to research into science and mathematics education in context.
  11. Identify problems related to specific areas of science and mathematics education and evaluate which methodological approaches allow for their solution.
  12. Identify theoretical references and evaluate their appropriateness for interpreting problems specific to science and mathematics education in context.
  13. Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
  14. Judge the importance and theoretical and social pertinence of specific research into science and mathematics education in context.
  15. Plan research taking into account the possibilities and limitations of the use of digital tools in science and mathematics teaching.
  16. Produce conclusion taking into account the objectives and research questions and the theoretical references in context in science and mathematics education.
  17. Recognise the importance of social and cultural contexts in formal and non-formal education in science and mathematics research.
  18. Recognise the main processes related to research in scientific and mathematics education in context.
  19. Relate results in accordance with their origin (sources and instruments).
  20. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
  21. Understand the main aspects of research contexts in science and mathematics education and analyse them as objects of research.
  22. Understand the possibilities and limitations of the use of digital tools in teaching science and mathematics.
  23. Use ICT in the research process, information search and management, data analysis and the dissemination and communication of results.
  24. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
  25. Work in teams and with teams in the same or interdisciplinary fields.
  26. Write research articles about research in contexts adapted to the needs of professionals in education
  27. Write scientific summaries to be presented to different audiences.

Content

  • Contextualization and interdisciplinarity in the teaching of science and mathematics.
  • Scientific model-based inquiry in relevant contexts.
  • Mathematical modeling from relevant contexts.
  • Digital tools for the teaching of science and mathematics.
  • Models of professional knowledge of the teacher and Resolution of mathematical problems in relevant contexts.
  • Formative assessment throughout the learning process of the sciences and mathematics.
  • The assessment to qualify the learning of science and mathematics.
  • The external evaluation of the teaching of science and mathematics.

Methodology

The training activity will be developed based on the following dynamics:
  • Readings of articles and document collections
  • Lectures by teachers
  • Analysis and collective discussion of articles and document collections
  • Classroom practices: problem solving / cases / exercises
  • Presentation of works
  • Tutorials

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Activities

Title Hours ECTS Learning Outcomes
Type: Directed      
Classroom practices 18 0.72
Lectures 18 0.72 21, 22, 8, 5, 4, 7, 16, 6, 10, 9, 11, 12, 23, 14, 15, 1, 18, 17, 27, 19, 25
Type: Supervised      
Analysis and group discussion of papers 16 0.64
Tutorials 10 0.4
Type: Autonomous      
Production of papers / group work 60 2.4
Reading papers 28 1.12

Assessment

To access the assessment, 80% of the sessions of the module will need attendance.
										
											
										
											Students' participation and involvement will be valued in the activities proposed and in the development of the work dynamics.
										
											
										
											Two evaluation activities are proposed:
  • Individual reflection paper on the proposals for improvement of the project evaluated (also based on some of the reflections in theoretical referents analyzed throughout the module)
  • Evaluation of an interdisciplinary project (including the design of a question that allows assessing students' competencies) - Presentation of the work in groups

Assessment Activities

Title Weighting Hours ECTS Learning Outcomes
Evaluation of an interdisciplinary project 45% 0 0 21, 22, 8, 5, 4, 7, 16, 6, 10, 9, 11, 12, 23, 14, 15, 13, 20, 2, 3, 1, 18, 17, 27, 19, 24, 25
Individual reflection document 45% 0 0 21, 22, 8, 5, 4, 7, 16, 6, 10, 9, 11, 12, 23, 14, 15, 13, 20, 2, 3, 1, 18, 17, 26, 27, 19
Participation 10% 0 0 25

Bibliography

Abrahams, I. & Millar, R. (2008). Does Practical Work Really Work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30 (14), 1945 - 1969.

Albarracín, L., & Gorgorió, N. (2013). Problemas de estimación de grandes cantidades: modelización e influencia del contexto. Revista latinoamericana de investigación en matemática educativa16(3), 289-315.

Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educationa lStudies in Mathematics86(1), 79-96.

Aymerich, À. & Albarracín, L. (2016). Complejidad en el proceso de modelización de una tarea estadística. In Modelling in Science Education and Learning, 9(1), 5-24.

Badillo, E. y Fernández, C. (2018). Oportunidades que emergen de la relación entre perspectivas: Análisis del conocimiento y/o competencia docente. L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 66-80). Gijón: SEIEM.

Badillo, E.; Figueiras, L.; Font, V.; Martínez, M. (2013). Visualización gráfica y análisis comparativo de la práctica matemática en el aula. Enseñanza de las Ciencias, 31(3), 207-225.

Caamaño, A. (cr.) (2011). Didáctica de la Física y la Química. Barcelona: Ed. Graó.

Blomhøj, M. (2004). Mathematical Modelling: A Theory for Practice. In B. Clarke et al. (Eds.), International Perspectives on Learning and Teaching Mathematics (pp. 145-159). Gotemburgo, Suecia: National Center forMathematics Education.

Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Vol. 38 (2), 86-95. Disponible a:https://www.researchgate.net/publication/225708294_Theoretical_and_empirical_differentiations_of_phases_in_the_modeling_process_Zentralblatt_fr_Didaktik_der_Mathematik_382_86-95

Gamboa, G., Badillo, E., Ribeiro, M., Montes, M. y Sánchez-Matamoros, G. (2020). The role of teachers’knowledge in the use of learning opportunities triggered by mathematical connections. En, S. Zehetmeier, D. Potari y M. Ribeiro. Professional Development and Knowledge of Mathematics Teachers (pp. 24-43). New York: Routledge.

García-Honrado, I., Clemente, F., Vanegas, Y., Badillo, E. y Fortuny, J. M. (2018). Análisis de la progresión de aprendizaje de una futura maestra. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 231-240). Gijón: SEIEM.

Hernández, M. I. & Couso, D. (2016). Comunicando ciencia en talleres experimentales para estudiantes de educación primaria y secundaria: Aportaciones de la didáctica de las ciencias experimentales al diseño, implementación y evaluación de talleres de comunicación científica. UAB. Disponible en: < https://ddd.uab.cat/pub/llibres/2016/149938/Guia_talleres_Fecyt_revisada.pdf>

Hernández, M.I. (2018). Com a docents de ciències, avaluem la nostra pràctica? Revista Ciències, 36, 20-29.

Hernández-Sabaté, A., Joanpere, M., Gorgorió, N., & Albarracín, L. (2015). Mathematics learningopportunities when playing a tower defense game. International Journal of Serious Games2(4), 57-71.

Hofstein, A., Lunetta, V.N. (2004). The Laboratory in Science Education: Foundations for theTwenty-First Century. Science Education, 88, 1.

Klein, P.D; Kirkpatrick, L.C. (2010). Multimodal Literacies in Science: Currency, Coherence and Focus. Research in Science Education, 40, 87-92.

Lin, F-L., y Rowland, T. (2016). Pre-Service and In-Service Mathematics Teachers’ Knowledge and Professional Development. En, A. Gutierrez, G. C. Leder, y P. Boero, The Second Handbook of Research on the Psychology of Mathematics Education (pp. 483-520). Rotterdam, The Netherlands: Sense Publishers.

Maaß, K. (2006). What are modelling competencies? ZDM Vol. 38 (2), 113 – 141. https://pdfs.semanticscholar.org/0303/d30d25016a810887169b23259d7aa83683d1.pdf

Millar, R. (2009). Analysing practical activities to assess and improve effectiveness: The Practical Activity Analysis Inventory (PAAI). Centre for Innovation and Research in Science Education, Department of Educational Studies, University of York, Heslington, York.

Mortimer, E.F., Scott, P.H. (2003). Meaning Making in Secondary. Science Classrooms. Philadelphia, USA: Open University Press.

Niss, M. & Højgaard, T. (2011). Competencies and Mathematical Learning Ideas and inspiration for the development of mathematics teaching and learning in Denmark. KOM project. IMFUFA, Roskilde University, Denmark.

Osborne, J. (2014). Teaching scientific practices: meeting the challenge of change. Journal of Science Teacher Education, 25, 177 – 196.

Pintó, R. Couso, D. Hernandez, M. (2010). An inquiry-oriented approach for making the best use of ICT in the classroom. elearning papers, 20.

Polya, G. (1965). Cómo plantear y resolver problemas.Ed. Trillas. México.

Ponte, J. P., & Chapman, O. (2006). Mathematics teachers' knowledge and practices. In A. Gutierrez & P. Boero (Eds.), Handbook of reaserch on the psychology of mathematics education: Past, present and future (pp. 461-494). Roterdham: Sense.

Rico, L., Gómez, P. y Cañadas, M. (2014). Formación Inicial en educación matemática de los maestros de primaria en España, 1991-2010. Revista de Educación, 363, 35-59.

Rico, L., Gómez, P., Cañadas, M. C. (2009). Estudio TEDS-M: estudio internacional sobre la formación inicial del profesorado de matemáticas. En M.J. González, M.T. González & J. Murillo (Eds.), Investigación en Educación Matemática XIII (pp. 425- 434). Santander: SEIEM.

Roca, M.; Márquez, C.; Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31, 1, 95-114.

Sala, G. & Font, V. (2019). Papel de la modelización en una experiencia de enseñanza de las matemáticas basada en indagación. Avances de Investigación en Educación Matemática, num. 16, 73-85. DOI: https://doi.org/10.35763/aiem.v0i16.283

Sala, G., Barquero, B., Barajas, M., & Font, V. (2016). Què amaguen aquestes ruïnes? Disseny d’una unitat didàctica interdisciplinary per una plataforma virtual. Revista del Congrés Internacional de Docència Universitària i Innovació (CIDUI), núm. 3 (2016). 

Sanmartí, N. (2016). Trabajo por proyectos: ¿filosofía o metodología? Cuadernos dePedagogía, 472.

Sanmartí, N., & Márquez, C. (2017). Aprendizaje de las ciencias basado en proyectos: del contexto a la acción. Ápice. Revista de educación científica, 1(1), 3-16.

Sanmartí, N. (2020). Avaluar és aprendre. Xarxa Competències bàsiques. Generalitat de Catalumya. Departament d’Educació.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). New York: MacMillan.

Shulman, L. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, (15), 2,  4-14.

Scott, P., Ametller, J. (2006). Teaching science in a meaning fulway: striking a balance between opening up and closing down classroom talk. School Science Review, 88(324), 77-83.

Sol, M., Giménez, J., Rosich, N. (2011). Trayectorias modelizadoras en la ESO. Modelling in Science Education and Learning, [S.l.], v. 4, p. 329-343, Disponible en: <http://polipapers.upv.es/index.php/MSEL/article/view/3100>.

Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation, California.

Software

No specific software is required