Logo UAB
2021/2022

Science of Geographical Information: Remote Sensing and GIS

Code: 43380 ECTS Credits: 15
Degree Type Year Semester
4314828 Remote Sensing and Geographical Information Systems OB 0 1
The proposed teaching and assessment methodology that appear in the guide may be subject to changes as a result of the restrictions to face-to-face class attendance imposed by the health authorities.

Contact

Name:
Xavier Pons Fernández
Email:
Xavier.Pons@uab.cat

Use of Languages

Principal working language:
spanish (spa)

Other comments on languages

Approximately 10 % of the classes are in Catalan and 90 % in Spanish. Most of the literature is in English

Teachers

Miquel Ninyerola Casals
Alaitz Zabala Torres

External teachers

Carolina Puig
Eduardo de Miguel
Javier Muñoz
Joan Masó Pau
Jordi Joan Mallorquí Franquet
Josep A. Gili
Mercè Vall-Llossera Ferran
Sergi Gumà

Prerequisites

Prerequisites are not required

Objectives and Contextualisation

This module aims to create an introductory, broad and specific framework at the same time, to the science and technology of geographic information, focusing on key concepts both of aspects of classical cartography and global positioning, as well as aspects related to remote perception and the use of Geographic Information Systems.

At the end of the course, the student will be able to:

Understand the main functions of different programs used in GIS and Remote Sensing.
Properly use different data and metadata formats.
Dominate the fundamental concepts of the various disciplines related to the position and representation of elements in space, such as photogrammetry, remote sensing or global positioning systems.
Properly represent a geographical reality in a digital or analogical cartographic document.
Making informed decisions about the use of remote sensing in territorial studies.
Discriminate between different types of platforms and sensors according to their characteristics and to know how to choose the appropriate ones according to the objectives of the study to be carried out.

Competences

  • Apply knowledge of remote sensing platforms and sensors to analysing and processing data in different types of studies.
  • Choose the most suitable tools and applications to fulfil the objectives of a project in the field of spatial planning or analysis.
  • Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.
  • Continue the learning process, to a large extent autonomously.
  • Design and apply a methodology, based on the knowledge acquired, for studying a particular use case.
  • Take a holistic approach to problems, offering innovative solutions and taking appropriate decisions based on knowledge and judgement.
  • Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
  • Use different specialised GIS and remote sensing software, and other related software.

Learning Outcomes

  1. Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.
  2. Continue the learning process, to a large extent autonomously.
  3. Design and apply a methodology, based on the knowledge acquired, for studying a particular use case.
  4. Differentiate between different types of platforms and sensors based on their characteristics and choose ones that are suited to the aims of the study to be performed.
  5. Handle different data and metadata formats appropriately.
  6. Master the fundamental concepts of the various disciplines related to the position and representation of elements in space, such as photogrammetry, remote sensing and global positioning systems.
  7. Represent a real geographic area appropriately in a digital or analogue cartographic document.
  8. Take a holistic approach to problems, offering innovative solutions and taking appropriate decisions based on knowledge and judgement.
  9. Take informed decisions on the use of remote sensing in land-use studies.
  10. Understand the main functions of different programmes used in GIS and remote sensing.
  11. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Content

PLATFORMS AND SENSORS

1. Platforms: Aircraft
2. Platforms: Unmanned Aircraft
   2.1. Key points of regulation
   2.2. Classification
3. Platforms: satellites
   3.1. Subsystems satellite
   3.2. Launching
   3.3. Spatial Orbits
   3.4. Orbital maneuvers
   3.5. Segment Earth
4. Sensors
   4.1. Telescopes
   4.2. Lidar
   4.3. Microwave radiometers and radar
         4.3.1. Microwave Remote Sensing
         4.3.2. SAR: Synthetic Aperture Radar
         4.3.3. Geometry and spatial resolution SAR
         4.3.4. "Performance" SAR
         4.3.5. SAR acquisition modes
         4.3.6. Systems airborne and satellite-SAR
         4.3.7. Interferometric applications
5. Characterization of an instrument/Remote Sensing missions
   5.1. Spatial characterization (geometric)
   5.2. Spectral characterization
   5.3. Radiometric Characterization
   5.4. Temporal characterization

PRINCIPLES OF CARTOGRAPHY

1. History of cartographic representation
2. Geodesy
3. Cartographic projections
4. The UTM reference system
5. Cartographic products: the maps
6. Topographic and thematic mapping

GEODESY AND POSITIONING SYSTEMS

1. Geodesy and Cartography
2. Nomenclature: what is GNSS; other systems besides the GPS
3. Introduction to the systems of global positioning and historical development
4. Fundamentals of the system
    4.1. Sectors or segments
    4.2. Basic measures. Code and phase
5. Methods of operation
6. Type of receivers
7. Accuracy
8. Applications

FUNDAMENTALS OF GIS

1. Introduction
     1.1. Definition of GIS
     1.2. Geographical information and GIS
     1.3.Connections and differences between GIS and other systems
     1.4. GIS Applications
     1.5. Introduction to ArcGIS and MiraMon software
2. Models of data
    2.1. Raster model
    2.2. Vector model
    2.3. Topological structure
    2.4. Attributes, tables and validation
    2.5. Model of observations and measures.
    2.6. Formats: import and export. CAD model
3. Production of data
    3.1. Data entry
    3.2. Validation and errors
4. Data processing
    4.1. Classification and reclassification
    4.2. Raster transformations - vector: rasterization and vectorization
    4.3. Cartographic generalization
5. Introduction to the GIS analysis
    5.1. Arithmetic and logic operations between layers
    5.2. Analytical combinations of layers

COMPOSITION AND IMPRESSION OF CARTOGRAPHIC DOCUMENTS

Practical contents based on the use of different software to obtain cartography on paper. It will deal with formal issues of the composition as well as advice aimed at obtaining intelligent impressions and faithful to the reality that one wants to represent.

SYNOPTICAL VIEW OF REMOTE SENSING

1. Introduction. Overview of remote sensing
    1.1. Definition
    1.2. What tools do we have?
    1.3. What is intended?
    1.4. Type of platforms: aerial and satellite, heliosynchronous and geostationary
    1.5. Types of sensors according to the way of obtaining the data, the type of information recorded, the spectral region to which they are sensitive, etc.
    1.6. Typical image processing chain (corrections, improvements, extraction of image information, etc.).
    1.7. Basics: pixel; space, spectral, radiometric, temporal and angular resolutions; grayscale and palette images, true color and false color renderings
    1.8. Visual analysis versus digital processing
    1.9. Satellite remote sensing versus aeroported remote sensing and UAV
  1.10. Important characteristics and limitations of remote sensing
  1.11. Brief history of remote sensing. Remote sensing in Spain and internationally: associations, congresses, publications
  1.12. Comment of the recommended bibliography and the main journals
2. Electromagnetic spectrum and spectral signatures
    2.1. Basic concepts
    2.2. Solar radiation; thermal radiation emitted by the Earth; microwave
    2.3. Spectral signatures
3. Nature of images. Corrections, improvements, transformations
    3.1. Nature of the images
    3.2. Most common formats in remote sensing
    3.3. Geometric corrections
    3.4. Radiometric corrections
    3.5. Image enhancement 
    3.6. Transformations: Vegetation indexes, main components, etc.
4. The interpretation of satellite imagery 
5. Obtaining information from the images
    5.1. Supervised classification
    5.2. Unsupervised classification
    5.3. Mixedclassification 
    5.4. Estimation of continuous variables
    5.5. Verification of results
6. Remote sensing, mapping and geographic information systems

PHOTOGRAMETRY

1. Fundamentals of photogrammetry
    1.1. Introduction
    1.2. Air photogrammetry
    1.3. Measures on photographs and corrections
    1.4. Vertical photography
    1.5. Stereoscopic vision
    1.6. Stereoscopic parallax
    1.7. Rectification
    1.8. Restitution
2. Topographical photogrammetry
    2.1. Phases of a topographic uprising
    2.2. Classification of photogrammetric surveys
    2.3. Photographic scale
    2.4. Planning of work. Flight projects Plan and flight execution
    2.5. Post-photogrammetric flight operations (restoration, rectification, generation of digital terrain models, etc.)
    2.6. Orthophotography versus Rectification

Methodology

In this module there are 3 groups of learning activities:

Targeted activities consist of classes of theory and practices that will be carried out in a specialized computer room. At the beginning of each of the subjects that make up the module, the teachers will explain the structure of the theoretical-practical contents, as well as the evaluation method.

Supervised activities consist of classroom practices that will allow you to prepare the work and exercises of each subject, as well as tutorial sessions with the teachers in case the students request it.

Autonomous activities are a set of activities related to the elaboration of works, exercises and exams, such as the study of different material in the form of journal articles, reports, data, etc., defined according to the needs of autonomous work of each student

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Activities

Title Hours ECTS Learning Outcomes
Type: Directed      
Master classes / exhibitions 49 1.96 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11
Resolution exercises 34 1.36 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11
Type: Supervised      
Classroom practices 87 3.48 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11
Tutorials 10 0.4 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11
Type: Autonomous      
Personal study 30 1.2 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11
Reading of articles / reports of interest 3 0.12 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11
Writing reports 157 6.28 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11

Assessment

The evaluation of this subject consists of the following system:

a) The realization of several exams, that will be between 40 % and 60 % of the final note and that will include the theoretical and practical subject carried out. The exam that has not reached the minimum mark of 5 out of 10 must be repeated the day assigned by the teacher of the subject.

b) The accomplishment of different practical works proposed throughout the teaching of the module and delivered within the fixed term, that will be between 40 % and 60 % of the final note. A correct formal presentation and careful preparation will be assessed.

Assessment Activities

Title Weighting Hours ECTS Learning Outcomes
Theoretical and practical exam 40 % - 60 % 5 0.2 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11
Writing reports 40 % - 60 % 0 0 10, 8, 4, 3, 6, 5, 9, 1, 2, 7, 11

Bibliography

Adam C. Watts, Vincent G. Ambrosia and Everett A. Hinkley. "Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use". Remote Sensing, 2012, 4, 1671-1692; doi:10.3390/rs4061671.
Arbiol, R., O. Viñas, J.M. Camarasa i V. Palà (1986) "Mapa d'usos del sòl de Catalunya a partir de dades del satèl.lit LANDSAT-2" Institut Cartogràfic de Catalunya. Barcelona. 154 pàgs. + 1 mapa.
Ashkenazi, V. (1994) “El GPS y los mapas”, XX Congreso Int. De la F.I.G., Melbourne.
Bariou, R., D. Lecamus i F. Le Henaff (1985a) "Réponse spectrale des végétaux" Presses Universitaires de Rennes 2. Rennes. 91 pàgs.
Bariou, R., D. Lecamus i F. Le Henaff (1985b) "L'atmosphère" Presses Universitaires de Rennes 2. Rennes. 77 pàgs.
Bariou, R., D. Lecamus i F. Le Henaff (1985c) "Le rayonnement electromagnetique" Presses Universitaires de Rennes 2. Rennes.
Bariou, R., D. Lecamus i F. Le Henaff (1985d) "Albedo, Reflectance" Presses Universitaires de Rennes 2. Rennes. 41 pàgs.
Barret, E. C. i L. F. Curtis (1999): “Introduction to Environmental Remote Sensing”, Cheltenham, Stanley Thornes Publishers Ltd.
Bernhardsen T. (2002) Geographic Information Systems: An Introduction Wiley; 3 Sub edition 448p.
Bonhan-Carter, G.F, (1994) Geographic information systems for Geoscientists. Modelling with GIS. Pergamon 398 p.
Borengasser, M., W. S. Hungate i R. Watkins (2008) "Hyperspectral Remote Sensing: Principles and Applications” CRC Press, Boca Raton. 119 pàgs.
Bugayevskiy LM, Snyder JP. 1995. Map projections. A reference manual. Taylor and Francis. Londres.
Burrough, P.A. i R.A. McDonnel, (1998). Principles of Geographical Information Systems (2nd Edition). Oxford University Press, Oxford. 333 p.
C. Elachi, J . van Zyl, “Introduction to the Physics & Techniques of Remote Sensing”, John Wiley and Sons, 2nd Edition, Hoboken USA, 2006.
Campbell, J.B. (2008) "Introduction to Remote Sensing" The Guilford Press. N.Y. 626 pàgs. 4ª edició.
Cassenet, J. (1988) "Satellites et capteurs" Paradigme. Caen. 142 pàgs.
Chuvieco, E. (2008): “Teledetección Ambiental”, Barcelona, Ariel. 592 pàgs. 3ª edició [Prèviament: Chuvieco, E. (1996) "Fundamentos de teledetección espacial" Rialp. Madrid. 453 pàgs. 3ª edició (reimpressió corregida, febrer 2000).]
Cloude, S.R. “Polarisation: Applications in remote sensing”. Oxford university Press, 2010.
Colwell, R.N. (ed.) (1983) "Manual of Remote Sensing" American Society of Photogrammetry. Falls Church. Virginia. 2 vol.
Conway, E. D. (1997): “An introduction to satellite image interpretation”, Baltimore, John Hopkins University Press.
Cracknell, A. P. i L. W. B. Hayes (2007): “Introduction to Remote Sensing”, CRC Press, Boca Ratón. 335 pàgs. 2ª edició (1ª edició de 1991).
Curlander , McDonough, “Synthetic Aperture Radar ”, John Wiley, 1991.
Curran, P.J. (1985) "Principles of Remote Sensing" Longman. London.
Data: Algorithms and Implementations”, Artech House, Norwood, USA,2005.
Dent BD, Torguson JS, Hodler TW. 2009. Cartography. Thematic Map Design. Mc Graw Hill. New York.
Diaz-Delgado, R., Lucas, R., Hurford, C. (Eds.) (2017) "The Roles of Remote Sensing in Nature Conservation" Springer. 318 pàgs.
Emery, W. i A. Camps (2017) "Introduction to Satellite Remote Sensing. Atmosphere, Ocean, Land and Cryosphere Applications". Elsevier. 860 pàgs.
Foin, P. (1987) "Cartographie topographique et thématique"Paradigme. Caen. 128 pàgs.
Gandía, S. i J. Melià (eds.) (1991) "La teledetección en el seguimiento de los fenómenos naturales. Recursos renovables: Agricultura" Departament de Termodinàmica. Universitat de València.
Girard, C.M. i C.M. Girard (1989) "Teledetection Appliquée. Zones tempereées et intertropicales" Masson. Paris.
Girard, M.C. i C.M.Girard (1999) "Traitement des données de télédétection" Dunod. Paris. 529 pàgs. ISBN 2-10-004185-1.
Gutiérrez Puebla, J. i Gould, M. (1994). SIG: Sistemas de información geográfica. Síntesis. Madrid. 251 p.
Guyot, G. (1989) "Signatures spectrales des surfaces naturelles" Paradigme. Caen. 178 pàgs.
H.J. Kramer. 1996. Observation of the Earth and its environment. 3rd edition. Springer.
Herring T.A. (1996) “El sistema global de posicionamiento” Investigación y Ciencia, Abril.
Heywood I, S. Cornelius, S. Carver (2006) An Introduction to Geographical Information Systems Prentice Hall; 3 edition 464p.
I .G.Cumming, F.H.Wong, “Digit al Processing of Synthetic Aperture Radar.
Institut Cartogràfic de Catalunya (1992) "Mapa d'usos del sòl de Catalunya" Institut Cartogràfic de Catalunya. Barcelona. 118 pàgs. + 20 làmines + 1 mapa.
Jensen, J.R. (2004) "Introductory Digital Image Processing. A Remote Sensing Perspective" Prentice Hall. Englewood Cliffs. 3ª edició. 544 pàgs.
Joly, G. (1986) "Traitement des fichiers-images" Paradigme. Caen. 138 pàgs.
Joly, G. (1988) "Les données-images" Paradigme. Caen. 137 pàgs.
Joseph, G., “How well do we understand Earth observation electro-optical sensor parameters?” ISPRS Journal of Photogrammetry and Remote Sensing 55 (2000), 9-12.
Laurini, R. i Tompson, D. (1992). Fundamentals of Spatial Information Systems. Academic Press. Londres. 680 p.
Leick, A. (2004) “GPS Satellite Surveying” J. Wiley & Sons. Nueva York. 3rd Ed.
Lekkerkerk, H-J (2007) “GPS Handbook”. Ed. Geoinformatics, 180 pp.
Lillesand, T.M. i R.W. Kiefer (2007) "Remote Sensingand Image Interpretation" John Wiley & Sons. N.Y. 768 pàgs. 6ª edició.
Mather, P.M. (2004) "ComputerProcessing of Remotely-Sensed Images" J. Wiley & Sons. Chichester. 324 pàgs. 3ª edició.
Núñez, Valbuena, Velasco (1992) “GPS, la nueva era de la Topografía”. Ed. Ciencias Sociales, Madrid.
Paine, D. and J. Kiser. (2003) "Aerial Photography and Image Interpretation" J. Wiley & Sons. Chichester. 648 pàgs. 2ª edició.
Peters A. 1992. La nueva cartografía. Vicens Vives. Barcelona.
Philip R. Bevington, D. K. Robinson. 2nd edition. MacGraw-Hill. 1992. Data reduction and error analysis for the physical sciences.
Pinilla, C. (1995) "Elementos de Teledetección" RAMA. Madrid.
Pons X, Arcalís A. 2012. Diccionari terminològic de teledetecció. Barcelona: Institut Cartogràfic de Catalunya: Enciclopèdia Catalana (Diccionaris Terminològics).
R.F.Hanssen, “Radar Interferometry. Data Interpretation and Error Analysis”, Kluwer Academic Publishers, Norwell USA, 2009.
Rabella JM, Panareda JM, Ramazzini G. 2011. Diccionari terminològic de cartografia. Barcelona: Institut Cartogràfic de Catalunya: Enciclopèdia Catalana (Diccionaris Terminològics). Acces on line: http://www.termcat.cat/ca/Diccionaris_En_Linia/197/
Rees, G. (2005): “The Remote Sensing Data Book”, Cambridge, Cambridge University Press. 276 p. 2ª edició.
Rees, W.G. (1990) "Physicalprinciples ofremote sensing" Cambridge University Press. Cambridge. 247 pàgs.
Richards, J. A. (2012): “Remote Sensing Digital Image Analysis. An Introduction”, Berlin, Springer-Verlag. 494 pàgs. (en algunes edicions anteriors, com la del 2005, en coautoira amb X. Jia).
Robinson AH, Morrison JL, Muehrcke PC, Kimerling AJ, Guptill, SC. 1995. Elements of cartography, 6th ed. John Wiley and Sons. New York.
Santos Preciado, J.M. (2004). Sistemas de información geográfica. Unidad didáctica. (ref. 60105UD01A01), UNED. Madrid. 460 p.
Schowengerdt, R. A. (2006): “Remote Sensing. Models and methods for image processing”, San Diego, California, Academic Press. 560 pàgs. 2ª edició.
Sobrino, J. A. (Ed.) (2000): “Teledetección”, València, Servei de Publicacions, Universitat de València.
The NCGIA Core Curriculum in GIScience (1990-2000) La internet: http://www.ncgia.ucsb.edu/giscc.
Ulaby, Moore, Funk, “Microwave remot e sensing, active and passive”, Vols.I ,I I ,I I I , Addison Wesley i Artech House 1981.
Ustin, S. (Ed.) (2008): “Remote Sensing for Natural Resource Management and Environmental Monitoring” (Manual of Remote Sensing - Third Edition), Wiley and American Soc. of Photogrammetry and Remote Sensing. New York. 768 p.
W.J. Larson, J.R. Wertz. 1999. Space Mission Analysis and Design (3rd edition).Space Technology Library.
Wilkie, D. S. i J. T. Finn (1996): “Remote Sensing Imagery for Natural Resources Monitoring”, New York, Columbia University Press.
William L. Wolfe. 1998. Introduction to radiometry. SPIE Press (vol TT29).
Xiong X, Wenny B, Barnes W, Salomonson V. "Overview Of MODIS Calibration And Characterization And Lessons Learned". In: 2009 IEEE International Geoscience and Remote Sensing Symposium; JUL 12-17, 2009; Cape Town,SOUTH AFRICA. 2009. p. 2397-2400.

Software

MiraMon, ArcGIS, QGIS, MATLAP, ENVI, R, Mission Planner, Office Microsoft