Logo UAB
2019/2020

Matemàtiques I

Codi: 102345 Crèdits: 6
Titulació Tipus Curs Semestre
2501572 Administració i Direcció d'Empreses FB 1 1
2501573 Economia FB 1 1

Professor/a de contacte

Nom:
Maria del Mar Gómez Pujalte
Correu electrònic:
MariaDelMar.Gomez@uab.cat

Utilització d'idiomes a l'assignatura

Llengua vehicular majoritària:
català (cat)
Grup íntegre en anglès:
Grup íntegre en català:
Grup íntegre en espanyol:

Equip docent

Sergio Baena Mirabete
Marina Bannikova
Catalina Bonet Bonet
Maria del Mar Gómez Pujalte

Equip docent extern a la UAB

Gerard Gnutti

Prerequisits

No s’estableixen prerequisits assolits prèviament al grau. No obstant, l’assignatura assumeix que l’estudiant accedeix al grau amb nocions suficients de matemàtiques adquirides al batxillerat. Es recomana enèrgicament a aquells estudiants amb dificultats amb les matemàtiques o amb nocions massa bàsiques (especialment els que no hagin cursat batxillerat) participin al curs propedèutic de matemàtiques organitzat per la Facultat i/o altres accions de preparació per tal de tenir les eines adequades per assolir satisfactòriament els continguts del curs.

Objectius

L'assignatura de Matemàtiques I té també un paper anivellador, que ha de permetre a l'estudiant adquirir i consolidar els seus coneixements i habilitats per comprendre i manipular correctament els conceptes i eines matemàtiques bàsiques relatives a l'anàlisi d'una variable real. A més ha de poder plantejar i treballar, en l'entorn d’una variable, amb models i problemes senzills que tinguin components de l'economia i de l'empresa. Aquests coneixements, juntament amb els de Matemàtiques II, permetran a l’estudiant disposar de les eines necessàries per cursar les matèries més avançades, que requereixen de l’ús d’aquests instruments matemàtics.

Per això, els objectius que es pretenen assolir són els següents:

1. Familiaritzar a l'estudiant amb la formulació i el raonament matemàtic.

2. Introduir el paper de models matemàtics a l'economia i l'empresa.

3. Identificar i saber manipular les principals famílies de funcions.

4. Treballar amb derivades i resoldre límits de funcions d'una variable.

5. Entendre i saber determinar les propietats bàsiques que exhibeixen les funcions d'una variable.

6. Representar gràficament funcions d'una variable.

7. Resoldre problemes d'optimització en una variable.

8. Determinar i calcular primitives emprant les tècniques bàsiques d'integració.

Competències

    Administració i Direcció d'Empreses
  • Aplicar els instruments matemàtics per sintetitzar situacions econòmiques i empresarials complexes.
  • Capacitat de comunicació oral i escrita en català, castellà i anglès, que permeti sintetitzar i presentar oralment i per escrit la feina feta.
  • Demostrar que es comprèn el llenguatge matemàtic i alguns mètodes de demostració.
  • Organitzar la feina, pel que fa a una bona gestió del temps i a la seva ordenació i planificació.
  • Utilitzar les tecnologies de la informació disponibles i adaptar-se als nous entorns tecnològics.
    Economia
  • Demostrar que es comprèn el llenguatge matemàtic i alguns mètodes de demostració.

Resultats d'aprenentatge

  1. Analitzar i dibuixar funcions.
  2. Calcular i estudiar extrems de funcions.
  3. Calcular integrals de funcions d'una variable.
  4. Capacitat de comunicació oral i escrita en català, castellà i anglès, que permeti sintetitzar i presentar oralment i per escrit la feina feta.
  5. Deduir propietats d'una funció a partir de la seva gràfica.
  6. Manipular desigualtats i successions.
  7. Organitzar la feina, pel que fa a una bona gestió del temps i a la seva ordenació i planificació.
  8. Plantejar i resoldre analíticament problemes d'optimització en l'àmbit de l'economia.
  9. Resoldre problemes que impliquin el plantejament d'integrals en problemes de l'àmbit de l'economia (excedent del consumidor i del productor, etc.).
  10. Treballar intuïtivament, geomètricament i formalment amb les nocions de límit, derivada i integral.
  11. Utilitzar les tecnologies de la informació disponibles i adaptar-se als nous entorns tecnològics.

Continguts

PART I. INTRODUCCIÓ

 

Tema 1. CONCEPTES BÀSICS

1.1. Conceptes bàsics: variables, constants, paràmetres, equacions i identitats

1.2. Els nombre reals: concepte i valor absolut

1.3. La recta real: distancia, desigualtats, inequacions i intervals

 

Tema 2. REPÀS D’ÀLGEBRA I OPERACIONS BÀSIQUES

2.1. Taxes de creixement

2.2. L’ús dels logaritmes. Aplicacions a l’economia

2.3. Càlcul amb fraccions, potències i arrels

2.4. Simplificació d’expressions matemàtiques

 

PART II. ESTUDI I REPRESENTACIÓ DE FUNCIONS

                                

Tema 3. FUNCIONS                                                                                                                           

3.1. Funcions reals d’una variable; domini i imatge

3.2. Tipus de funcions i propietats

3.3. Operacions amb funcions

 

Tema 4. CONTINUÏTAT

4.1. Límits i indeterminacions

4.2. Estudi de la continuïtat d’una funció

 

Tema 5. DERIVACIÓ

5.1. El concepte de derivada. Interpretació econòmica i geomètrica

5.2. La funció derivada. Regles de derivació

 

Tema 6. ESTUDI I REPRESENTACIÓ DE FUNCIONS

6.1. Funcions diferenciables

6.2. Estudi bàsic de funcions; punts de tall i simetries

6.3. Asímptotes

6.4. Intervals de monotonia de les funcions. Creixement, decreixement i extrems locals

6.5. Concavitat i convexitat de les funcions

6.6. Curvatura de les funcions. Màxims, mínims i punts d’inflexió

6.7. Representació gràfica de funcions

 

PART III. OPTIMITZACIÓ AMB UNA VARIABLE

 

Tema 7. OPTIMITZACIÓ AMB UNA VARIABLE

7.1. Problemes d’optimització. Extrems locals i solucions òptimes

7.2. Optimització en intervals tancats. El teorema de Weierstrass

 

PART IV. PRINCIPIS D’INTEGRACIÓ

 

Tema 8. INTRODUCCIÓ A LA INTEGRACIÓ

8.1. El concepte d’integral

8.2. Primitives i el càlcul d’integrals

8.3. Integrals definides

 

Tema 9. MÈTODES DE CÀLCUL DE PRIMITIVES

9.1. Integració per parts

9.2. Integració per substitució

Metodologia

Per a assolir els objectius de l'assignatura, es farà servir la següent tipologia d'activitats:

1. Classes teòriques on els professors desenvoluparan els principals conceptes
L'objectiu d'aquesta activitat és presentar les nocions fonamentals de l'assignatura, i facilitar el seu aprenentatge mitjançant l'anàlisi d'exemples, en els que es posarà l'èmfasi tant en els aspectes intuïtius com en aplicacions i explicacions en l'entorn econòmic.

2. Classes pràctiques on es discutirà la resolució del problemes
Aquesta activitat té com a finalitat comentar i resoldre els dubtes que els alumnes hagin pogut tenir durant la resolució dels problemes per tal que aquests puguin entendre i al mateix temps corregir els possibles errors comesos. Es potenciarà la presentació de solucions per part dels estudiants, sigui de forma oral com a pas previ a la seva discussió, o en forma escrita.

3. Resolució de problemes per part dels alumnes
Cada tema tindrà associat una llista de problemes, que hauran de ser resolts de forma autònoma pels estudiants. L'objectiu d'aquesta activitat es doble, ja que per una banda pretén que l'estudiant assimili els conceptes teòrics i eines de treball exposats a classe i, per l'altra, que adquireixi la destresa necessària per a resoldre exercicis i problemes.

4. Tutories presencials
L'estudiant disposarà d'unes hores on els professors de l'assignatura podran ajudar-lo/la a resoldre els dubtes que se li presentin en l'estudi de la matèria i en la resolució de problemes. Degut a l'ús de simbologia matemàtica que implica aquesta activitat, les tutories es desenvoluparan sempre de manera presencial.

Activitats formatives

Títol Hores ECTS Resultats d'aprenentatge
Tipus: Dirigides      
Classes de teoria 33 1,32 1, 2, 3, 5, 6, 8, 9, 10
Resolució d'activitats i problemes 13 0,52 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Tipus: Supervisades      
Seguiment del treball a realitzar 3 0,12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Tutories 3,5 0,14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Tipus: Autònomes      
Estudi 94 3,76 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Avaluació

L’avaluació de l’assignatura es durà a terme de forma continuada, mitjanant avaluacions parcials i un examen final. La tipologia d’activitats i el seu pes a la nota final és el següent:

-          Examen final: 50% de la nota final (tot el temari)

-          Examen parcial: 30% de la nota final (no allibera matèria)

-          Activitats d’avaluació continua: 20% de la nota final

 

La nota final serà la mitjana ponderada de les activitats. No s’estableix la política de nota mínima per a cap activitat.

Un alumne es considera que està "No Avaluat" a la assignatura sempre i quan no hagi participat de cap de les activitats d'avaluació. Per tant,es considera que un estudiant que realitza alguna component d'avaluació continuada ja no pot optar a un "No Avaluat”.

Aquells estudiants que cursin l’assignatura per segona, tercera o quarta vegada tenen l’opció seguir l’avaluació continuada o presentar-se directament a l’examen final, el que suposarà que aquest compti un 100% de la nota final.

Presentar-se a una sola o més de les activitats d’avaluació continuada comptarà com que l’estudiant segueix aquesta modalitat i ja no optarà a la possibilitat de no ser avaluat de l’assignatura com a ‘no presentant’.

Els exàmens parcial i final seran comuns a totes les titulacions de la Facultat i es duran a terme el mateix dia i la mateixa franja horària (al parcial es dividirà entre grup de matí i grup de tarda).

Els estudiants s’han d’examinar a l’aula assignada al grup on estan matriculats. Realitzar l’examen a l’aula assignada a un altregrup podrà comportar la pèrdua íntegra de la nota i que consti com a no presentat per aquell examen.

 

Calendari d’activitats d’avaluació

Les dates de les diferents proves d'avaluació (exàmens parcials, exercicis en aula, entrega de treballs, ...) s'anunciaran amb suficient antelació durant el semestre.

La data de l'examen final de l'assignatura està programada en el calendari d'exàmens de la Facultat.

"La programació de les proves d’avaluació no es podrà modificar, tret que hi hagi un motiu excepcional i degudament justificat pel qual no es pugui realitzar un acte d’avaluació. En aquest cas, les persones responsables de les titulacions, prèvia consulta al professorat i a l’estudiantat afectat, proposaran una nova programació dins del període lectiu corresponent."  Apartat 1 de l'Article 115. Calendari de les activitats d’avaluació (Normativa Acadèmica UAB)  

Els estudiants i les estudiantes de la Facultat d'Economia i Empresa que d'acord amb el paràgraf anterior necessitin canviar una data d'avaluació han de presentar la petició omplint el document Sol·licitud reprogramació prova  https://eformularis.uab.cat/group/deganat_feie/reprogramacio-proves

 

Procediment de revisió de les qualificacions

Coincidint amb l'examen final s'anunciarà el dia i el mitjà en que es publicaran les qualificacions finals. De la mateixa manera s'informarà del procediment, lloc, data i hora de la revisió d'exàmens d'acord amb la normativa de la Universitat.

 

Procés de Recuperació

“Per participar al procés de recuperació l'alumnat ha d'haver estat prèviament avaluat en un conjunt d'activitats que representi un mínim de dues terceres parts de la qualificació total de l'assignatura o mòdul.” Apartat 3 de l'Article 112 ter. La recuperació (Normativa Acadèmica UAB). Els estudiants i les estudiants han haver obtingut una qualificació mitjana de l’assignatura entre 3,5 i 4,9.

La data d’aquesta provaestarà programada en el calendari d'exàmens de la Facultat. L'estudiant que es presenti i la superi aprovarà l'assignatura amb una nota de 5. En cas contrari mantindrà la mateixa nota.

 

Irregularitats en actes d’avaluació  

Sense perjudici d'altres mesures disciplinàries que s'estimin oportunes, i d'acord amb la normativa acadèmica vigent, "en cas que l’estudiant realitzi qualsevol irregularitat que pugui conduir a una variació significativa de la qualificació d’un acte d’avaluació, es qualificarà amb 0 aquest acte d’avaluació, amb independència del procés disciplinari que s’hi pugui instruir. En cas que es produeixin diverses irregularitats en els actes d’avaluació d’una mateixa assignatura, la qualificació final d’aquesta assignatura serà 0".  Apartat 10 de l'Article 116. Resultats de l'avaluació. (Normativa Acadèmica UAB)

Activitats d'avaluació

Títol Pes Hores ECTS Resultats d'aprenentatge
Activitats entregables 20% 0,5 0,02 1, 2, 3, 5, 6, 7, 8, 9, 10, 11
Examen final 50% 2 0,08 1, 2, 3, 4, 5, 6, 8, 9, 10
Examen parcial 30% 1 0,04 1, 2, 3, 4, 5, 6, 8, 9, 10

Bibliografia

Manual bàsic

  • Sydsaeter, K., P.J. Hammond, i A. Carvajal, Matemáticas para el Análisis Económico (2a edició), Ed. Prentice Hall, Madrid (2012).

Bibliografia complementaria:

  • Sydsaeter, K. and P.J. Hammond, Essential Mathematics for Economic Analysis. Fourth edition. Pearson Education (2012).
  • Alejandre, F., F. Llerena, i C. Villela, Problemes de matemàtiques per a econòmiques i empresarials, Editorial Media (1995).Chiang, A.C., Métodos Fundamentales de Economía Matemàtica, Ed. McGraw-Hill, Madrid, quarta edició (2006).
  • Demidovich, B.P., 5000 Problemas de Análisis Matemático, Paraninfo (2000) o Thompson (2002).
  • Hoffmann, L.D., G.J. Bradley, i K.H. Rosen, Cálculo aplicado : para administración, economía y ciencias sociales, Ed. McGraw Hill, México, 8ª ed. (2006).
  • Larson, R., R. Hostetler, i B. Edwards, Cálculo y Geometria Analítica, Ed. Mc Graw Hill, México, tercera edició (2006).